Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Necroptosis is defined as a novel programmed cell necrosis that is mediated by receptor interacting serine-threonine protein kinase 1 (RIPK1) and other related signals. Necrosis, apoptosis and inflammation are commonly considered as the leading mechanism in acute kidney injury (AKI) induced by gentamicin (GEN), which is a useful antibiotic for treating the infection of Gram-negative bacterial.However, the necroptosis in the pathogenesis of GEN-induced AKI is unknown.In this study, to investigate the process and function of necroptosis in GENinduced AKI, NRK-52E and HK-2 cells and SD rats were used as the models.The necroptosis-related proteins, including RIPK1, RIPK3, mixed lineage kinase domain-like (MLKL) and phosphorylated MLKL (p-MLKL), were all increasing time-dependently when GEN was continuously given. By using the RIPK1 inhibitor necrostatin-1 (NEC-1) and RIPK3 inhibitor (CPD42), the GEN-induced toxicity of tubular cells was alleviated. Moreover, it was validated that GEN-induced cell apoptosis and inflammation were attenuated after treating with NEC-1 or CPD42, both in vivo and in vitro. When MLKL was knocked down by siRNA, NEC-1 and CPD42 can not further protect the damage of tubular cells by GEN. Although the using of pan-caspase inhibitor Z-VAD significantly decreased GENinduced apoptosis, it enhanced necroptosis and slightly promoted the decreased cell viability in GEN-treated cells, with the protective effects weaker than NEC-1 or CPD42. Finally, in vitro minimum inhibitory concentration (MIC) tests and bacteriostatic ring studies showed that NEC-1 did not interfere with the antibiotic effects of GEN. Thus, suppressing necroptosis can serve as a promising strategy for the prevention of GEN-induced nephrotoxicity.
Gentamicin (GEN) is a kind of aminoglycoside antibiotic with the adverse effect of nephrotoxicity. Currently, no effective measures against the nephrotoxicity have been approved. In the present study, epigallocatechin gallate (EG), a useful ingredient in green tea, was used to attenuate its nephrotoxicity. EG was shown to largely attenuate the renal damage and the increase of malondialdehyde (MDA) and the decrease of glutathione (GSH) in GEN-injected rats. In NRK-52E cells, GEN increased the cellular ROS in the early treatment phase and ROS remained continuously high from 1.5 H to 24 H. Moreover, EG alleviated the increase of ROS and MDA and the decrease of GSH caused by GEN. Furthermore, EG activated the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). After the treatment of GEN, the protein level of cleaved-caspase-3, the flow cytometry analysis and the JC-1 staining, the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11, were greatly changed, indicating the occurrence of both apoptosis and ferroptosis, whereas EG can reduce these changes. However, when Nrf2 was knocked down by siRNA, the above protective effects of EG were weakened. In summary, EG attenuated GEN-induced nephrotoxicity by suppressing apoptosis and ferroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.