Infectious clones were generated from 17 new Korean radish isolates of Turnip mosaic virus (TuMV). Phylogenetic analysis indicated that all new isolates, and three previously characterized Korean radish isolates, belong to the basal-BR group (indicating that the pathotype can infect both Brassica and Raphanus spp.). Pairwise analysis revealed genomic nucleotide and polyprotein amino acid identities of >87.9 and >95.7%, respectively. Five clones (HJY1, HJY2, KIH2, BE, and prior isolate R007) had lower sequence identities than other isolates and produced mild symptoms in Nicotiana benthamiana. These isolates formed three distinct sequence classes (HJY1/HJY2/R007, KIH2, and BE), and several differential amino acid residues (in P1, P3, 6K2, and VPg) were present only in mild isolates HJY1, HJY2, and R007. The remaining isolates all induced systemic necrosis in N. benthamiana. Four mild isolates formed a phylogenetic subclade separate from another subclade including all of the necrosis-inducing isolates plus mild isolate KIH2. Symptom severity in radish and Chinese cabbage genotypes was not correlated with pathogenicity in N. benthamiana; indeed, Chinese cabbage cultivar Norang was not infected by any isolate, whereas Chinese cabbage cultivar Chusarang was uniformly susceptible. Four isolates were unable to infect radish cultivar Iljin, but no specific amino acid residues were correlated with avirulence. These results may lead to the identification of new resistance genes against TuMV.
Perilla is an annual herb with a unique aroma and taste that has been cultivated in Korea for hundreds of years. It has been widely cultivated in many Asian and European countries as a food and medicinal crop. Recently, several viruses have been reported to cause diseases in perilla in Korea, including turnip mosaic virus (TuMV), which is known as a brassica pathogen due to its significant damage to brassica crops. In this study, we determined the complete genome sequences of two new TuMV isolates originating from perilla in Korea. Full-length infectious cDNA clones of these two isolates were constructed, and their infectivity was tested by agroinfiltration of
Nicotiana benthamiana
and sap inoculation of Chinese cabbage and radish plants. In addition, we analyzed the phylogenetic relationship of six new Korean TuMV isolates to members of the four major groups. We also used RDP4 software to conduct recombination analysis of recent isolates from Korea, which provided new insight into the evolutionary relationships of Korean isolates of TuMV.
Supplementary Information
The online version contains supplementary material available at 10.1007/s00705-021-05356-9.
A viral disease of broad bean (Vicia faba) was observed in Jiangsu, Zhejiang and Sichuan Province, the People's Republic of China. Its typical symptom on infected leaves was a white mottle, and, rarely, red necrotic lesions on several broad bean cultivars. A non‐aphid‐transmissible strain of turnip mosaic virus (TuMV) was identified as the causal agent of the disease on the basis of biological properties, particle morphology, seed and aphid transmission and serological tests. The virus could not be transmitted by aphids in the non‐persistent manner.
In this work, two new Turnip mosaic virus (TuMV) strains (Canola-12 and Canola-14) overcoming resistance in canola (Brassica napus) were isolated from a B. napus sample which showed typical TuMV-like symptoms and was collected from Gimcheon city, South Korea in 2020. Complete genomes and infectious clones of each isolate were obtained. Phylogenetic analysis indicated that the strains isolated from canola belonged to the World-B group. Both infectious clones which were driven by 35S and T7 promoters induced systemic symptoms on Nicotiana benthamiana and B. napus. To our knowledge, this is the first report of TuMV infecting B. napus in South Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.