Traditional intra prediction methods for HEVC rely on using the nearest reference lines for predicting a block, which ignore much richer context between the current block and its neighboring blocks and therefore cause inaccurate prediction especially when weak spatial correlation exists between the current block and the reference lines. To overcome this problem, in this paper, an intra prediction convolutional neural network (IPCNN) is proposed for intra prediction, which exploits the rich context of the current block and therefore is capable of improving the accuracy of predicting the current block. Meanwhile, the predictions of the three nearest blocks can also be refined. To the best of our knowledge, this is the first paper that directly applies CNNs to intra prediction for HEVC. Experimental results validate the effectiveness of applying CNNs to intra prediction and achieved significant performance improvement compared to traditional intra prediction methods.
Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.
We propose a specific method for converting a four-photon Greenberger-Horne-Zeilinger (GHZ) state to a W state in a deterministic way by using linear optical elements, cross-Kerr nonlinearities, and homodyne measurement. We consider the effects of the quadrature homodyne measurements on the fidelity of the W state and the experimental feasibility of the proposed scheme. This might provide great prospects for converting multipartite entangled states into each other for future optical quantum information processing (QIP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.