The integrated thermal management of advanced fighter jets directly affects the combat performance of the aircraft. This paper develops a set of multi-cycle integrated thermal management control system, based on the stepper motor drive servo valve. The stepper motor control system is integrated in the aircraft Remote Execution Unit (REU). The controlled information, such as flow, pressure, temperature, is collected and combined through the Remote Interface Unit (RIU). Through the IEEE-1394 bus, feedback achieves deterministic transmission between control-action-response, and through inverse time protection, the high reliable power drive can be achieved. The open-loop vector micro-stepping driving strategy of the stepper motor is designed, simplifying software and hardware designs. The experimental results show that the strategy developed in this paper can better realize the characteristics of two-phase current sine wave, have better acceleration performance, improve the controllability of the opening and closing angle of the stepping motor servo valve, and satisfy the comprehensive thermal management of advanced fighters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.