Abundant ions corresponding to the gas-phase cleavage of the Asp-Pro and Asp-Xxx bonds of peptides in the process of matrix-assisted laser desorption were observed using a time-of-flight mass spectrometer equipped with both linear and reflector mass analyzers. Peptides containing the N-terminal sequence, Asp-Pro ... from an endoproteinase Asp-N digest yielded one peak in the molecular ion region in the linear mode and two equally abundant peaks in the reflector mode TOF mass spectra. The lower molecular masses in the reflector mode mass spectra could be eliminated by removing the Asp residue or derivatizing its side-chain carboxyl group. The observed mass differences did not correspond to any amino acid; however, by lowering the potential of the reflector to correct for the energy loss the mass difference was determined to be 115 Da, i.e., Asp. The extent and rate of this decomposition was compared with that obtained using a four-sector tandem mass spectrometer in the MS/MS mode of operation without and with a collision gas at collision cell potentials of 3.0 and 9.86 kV. These data suggest the Asp-Pro peptide bond is more labile than other peptide bonds in the gas phase. Abundant metastable decomposition of internal Asp-Pro bonds was also observed in larger peptides and proteins. Based on these latter data, a mechanism for this gas-phase cleavage is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)
Predicting other traffic participants trajectories is a crucial task for an autonomous vehicle, in order to avoid collisions on its planned trajectory. It is also necessary for many Advanced Driver Assistance Systems, where the egovehicle's trajectory has to be predicted too. Even if trajectory prediction is not a deterministic task, it is possible to point out the most likely trajectory. This paper presents a new trajectory prediction method which combines a trajectory prediction based on Constant Yaw Rate and Acceleration motion model and a trajectory prediction based on maneuver recognition. It takes benefit on the accuracy of both predictions respectively a short-term and long-term. The defined Maneuver Recognition Module selects the current maneuver from a predefined set by comparing the center lines of the road's lanes to a local curvilinear model of the path of the vehicle. The overall approach was tested on prerecorded human real driving data and results show that the Maneuver Recognition Module has a high success rate and that the final trajectory prediction has a better accuracy.
The radiative and microphysical effects of aerosols can affect the development of convective clouds. The objective of this study is to reveal if the overall aerosol effects have any discernible impact on the diurnal variations in precipitation and lightning by means of both observational analysis and modeling. As the first part of two companion studies, this paper is concerned with analyzing hourly PM10, precipitation, and lightning data collected during the summers of 2008–2012 in the Pearl River Delta region. Daily PM10 data were categorized as clean, medium, or polluted so that any differences in the diurnal variations in precipitation and lightning could be examined. Heavy precipitation and lightning were found to occur more frequently later in the day under polluted conditions than under clean conditions. Analyses of the diurnal variations in several meteorological factors such as air temperature, vertical velocity, and wind speed were also performed. They suggest that the influence of aerosol radiative and microphysical effects serve to suppress and enhance convective activities, respectively. Under heavy pollution conditions, the reduction in solar radiation reaching the surface delays the occurrence of strong convection and postpones heavy precipitation to late in the day when the aerosol invigoration effect more likely comes into play. Although the effect of aerosol particles can be discernible on the heavy precipitation through the daytime, the influence of concurrent atmospheric dynamics and thermodynamics cannot be ruled out.
The proteome of normal male urine from a commercial pooled source has been examined using direct liquid chromatography-tandem mass spectrometry (LC-MS/MS). The entire urinary protein mixture was denatured, reduced and enzymatically digested prior to LC-MS/MS analysis using a hybrid-quadrupole time-of-flight mass spectrometer (Q-TOF) to perform data-dependent ion selection and fragmentation. To fragment as many peptides as possible, the mixture was analyzed four separate times, with the mass spectrometer selecting ions for fragmentation from a subset of the entire mass range for each run. This approach requires only an autosampler on the HPLC for automation (i.e, unattended operation). Across these four analyses, 1.450 peptide MS/MS spectra were matched to 751 sequences to identify 124 gene products (proteins and translations of expressed sequence tags). Interestingly, the experimental time for these analyses was less than that required to run a single two-dimensional gel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.