Neurofibrillary tangles composed of hyperphosphorylated, aggregated tau are a common pathological feature of tauopathies, including Alzheimer's disease. Abnormal phosphorylation of tau by kinases or phosphatases has been proposed as a pathogenic mechanism in tangle formation. To investigate whether kinase inhibition can reduce tauopathy and the degeneration associated with it in vivo, transgenic mice overexpressing mutant human tau were treated with the glycogen synthase kinase-3 (GSK-3) inhibitor lithium chloride. Treatment resulted in significant inhibition of GSK-3 activity. Lithium administration also resulted in significantly lower levels of phosphorylation at several epitopes of tau known to be hyperphosphorylated in Alzheimer's disease and significantly reduced levels of aggregated, insoluble tau. Administration of a second GSK-3 inhibitor also correlated with reduced insoluble tau levels, supporting the idea that lithium exerts its effect through GSK-3 inhibition. Levels of aggregated tau correlated strongly with degree of axonal degeneration, and lithium-chloride-treated mice showed less degeneration if administration was started during early stages of tangle development. These results support the idea that kinases are involved in tauopathy progression and that kinase inhibitors may be effective therapeutically.phosphorylation ͉ neurofibrillary tangles ͉ Alzheimer's disease ͉ tau protein
Cancer cells need to meet the metabolic demands of rapid cell growth within a continually changing microenvironment. Genetic mechanisms for reprogramming cellular metabolism toward proliferative, pro-survival pathways are well-reported. However, post-translational mechanisms, which would enable more rapid, reversible adaptations of cellular metabolism in response to protein signaling or environmental sensing systems, are less well understood. Here we demonstrate that the post-translational modification O-linked β-N-acetylglucosamine (O-GlcNAc) is a key metabolic regulator of glucose metabolism. O-GlcNAc is dynamically induced at Ser529 of phosphofructokinase 1 (PFK1) in response to hypoxia. Glycosylation inhibits PFK1 activity and redirects the flux of glucose from glycolysis through the pentose phosphate pathway (PPP), thereby conferring a selective growth advantage to cancer cells. Blocking glycosylation of PFK1 at Ser529 reduced cancer cell proliferation in vitro and impaired tumor formation in vivo. These studies reveal an unexpected mechanism for the regulation of metabolic enzymes and pathways, and pinpoint a new therapeutic approach for combating cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.