Proteome-scale studies of protein three-dimensional structures should provide valuable information for both investigating basic biology and developing therapeutics. Critical for these endeavors is the expression of recombinant proteins. We selected Caenorhabditis elegans as our model organism in a structural proteomics initiative because of the high quality of its genome sequence and the availability of its ORFeome, protein-encoding open reading frames (ORFs), in a flexible recombinational cloning format. We developed a robotic pipeline for recombinant protein expression, applying the Gateway cloning/expression technology and utilizing a stepwise automation strategy on an integrated robotic platform. Using the pipeline, we have carried out heterologous protein expression experiments on 10,167 ORFs of C. elegans. With one expression vector and one Escherichia coli strain, protein expression was observed for 4854 ORFs, and 1536 were soluble. Bioinformatics analysis of the data indicates that protein hydrophobicity is a key determining factor for an ORF to yield a soluble expression product. This protein expression effort has investigated the largest number of genes in any organism to date. The pipeline described here is applicable to high-throughput expression of recombinant proteins for other species, both prokaryotic and eukaryotic, provided that ORFeome resources become available.
Multi-substituted pentacenes, such as 1,2,3,4,6,8,9,10,11,13-decasubstituted pentacenes (Type I), 1,2,3,4,6,13-hexasubstituted pentacenes (Type II), 1,2,3,4-tetrasubstituted pentacenes (Type III), and 2,3-disubstituted pentacenes (Type IV), 1,2,3,4,6,11-hexasubstituted naphthacenes (Type V), 1,2,3,4-tetrasubstituted naphthacenes (Type VI), and 2,3-disubstituted naphthacenes (Type VII), were prepared by a homologation method. The homologation method involved the conversion of phthalic acid ester derivatives to two ring extended phthalic acid ester derivatives via diynes and metallacyclopentadienes using transition metals, such as Zr and Rh. For the formation of pentacenes of Type III and Type IV and naphthacenes of Type VII, trimethylsilyl-substituted diynes were used for zirconocene-mediated cyclization. Elimination of the trimethylsilyl groups after the cyclization afforded nonsubstituted position on pentacenes or naphthacenes. Structures of 1,4,6,8,9,10,11,13-octaethyl-2,3-bis(methoxycarbonyl)pentacene (9a) and 8,9,10,11-tetraethyl-2,3-bis(methoxycarbonyl)-1,4,6,13-tetrapropylpentacene (9b) were determined by X-ray analysis. The structure of 9a had the herringbone packing system in the crystal like nonsubstituted pentacene. However, 9b, whose substituents at 1,4,6,13-positions were changed from Et to Pr at 1,4,6,13-positions of 9a, had the face parallel plane system in the crystal.
[reaction: see text] A new and efficient palladium-catalyzed reaction of o-diiodoarenes with internal alkynes produces naphthalenes or anthracenes in good to excellent yields. This procedure provides a simple, catalytic, and straightforward ring-extension method for constructing substituted polycyclic aromatic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.