Existing studies have made a great endeavor in predicting users’ potential interests in items by modeling user preferences and item characteristics. As an important indicator of users’ satisfaction and loyalty, repeat purchase behavior is a promising perspective to extract insightful information for community e-commerce. However, the repeated purchase behaviors of users have not yet been thoroughly studied. To fill in this research gap from the perspective of repeated purchase behavior and improve the process of generation of candidate recommended items this research proposed a novel approach called ReRec (Repeat purchase Recommender) for real-life applications. Specifically, the proposed ReRec approach comprises two components: the first is to model the repeat purchase behaviors of different types of users and the second is to recommend items to users based on their repeat purchase behaviors of different types. The extensive experiments are conducted on a real dataset collected from a community e-commerce platform, and the performance of our model has improved at least about 13.6% compared with the state-of-the-art techniques in recommending online items (measured by F-measure). Specifically, for active users, with w = 1 and N(UA)∈[5,25], the results of ReRec show a significant improvement (at least 50%) in recommendation. With α and σ as 0.75 and 0.2284, respectively, the proposed ReRec for unactive users is also superior to (at least 13.6%) the evaluation indicators of traditional Item CF when N(UB)∈[6, 25]. To the best of our knowledge, this paper is the first to study recommendations in community e-commerce.
With the emergence of big data and the resulting information explosion, computational and mathematical methods provide effective tools to handle the vast amounts of data and information used in big data analytics, knowledge discovery and distillation, and decision-making for solving complex problems in the world [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.