Rationale: Over 50% of heart failure patients have preserved, rather than reduced ejection fraction (HFpEF vs. HFrEF). Complexity of its pathophysiology and the lack of animal models hamper the development of effective therapy for HFpEF. Objective: This study was designed to investigate the metabolic mechanisms of HFpEF and test therapeutic interventions using a novel animal model.Methods and Results: By combining the age, long-term high-fat diet and desoxycorticosterone pivalate challenge in a mouse model we were able to recapture the myriad features of HFpEF. In these mice, mitochondrial hyperacetylation exacerbated while increasing ketone body availability rescued the phenotypes. The HFpEF mice exhibited overproduction of interleukin (IL)-1β/IL-18, and tissue fibrosis due to increased assembly of NLPR3 inflammasome on hyperacetylated mitochondria. Increasing β-hydroxybutyrate (β-OHB) level attenuated NLPR3 inflammasome formation and antagonized proinflammatory cytokines-triggered mitochondrial dysfunction and fibrosis. Moreover, β-OHB downregulated the acetyl-CoA pool and mitochondrial acetylation, partially via activation of citrate synthase and inhibition of fatty acid uptake. Conclusions: Therefore, we identify the interplay of mitochondrial hyperacetylation and inflammation as a key driver in HFpEF pathogenesis which can be ameliorated by promoting β-OHB abundance.
PurposeTo evaluate the association of serum levels of adipokines and cytokines with psoriasis.Materials and MethodsA comprehensive literature search was performed in PubMed, ScienceDirect and Web of Science for the available relevant studies published before December 1, 2016. Differences in serum marker levels between patients and controls were pooled as standardized mean differences (SMDs) with 95% confidence interval to combine the effect estimations. We also conducted stratified analysis, meta-regression analysis and sensitivity analysis.ResultsSixty-three studies containing 2876 psoriasis patients and 2237 healthy controls were included in this meta-analysis. The pooled serum levels of TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-18, IL-22, chemerin, lipocalin-2, resistin, sE-selectin, fibrinogen and C3 were higher in psoriasis patients compared with healthy controls (all P < 0.05). In contrast, adiponectin levels were lower. Serum levels of IL-1β, IL-4, IL-10, IL-12, IL-17, IL-21, IL-23, visfatin and omentin were not significantly different between psoriasis patients and controls (all P > 0.05). However, increased serum levels of IL-17 correlated with psoriasis in men. For other biomarkers, age, gender and psoriasis area and severity index did not explain the differences in effect size between the studies.ConclusionsSerum levels of TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-18, IL-22, chemerin, lipocalin-2, resistin, sE-selectin, fibrinogen, complement 3, and adiponectin correlate with psoriasis and can be used as potential biomarkers for psoriasis and response to the treatment. Future studies are needed to identify additional players involved in the pathogenesis of psoriasis and to fully decipher the underlying mechanism.
Ovaries and uteri from normal adult female rats at known stages of the estrous cycle were analyzed for the presence of cellular retinol-binding protein (CRBP) and both types of cellular retinoic acid-binding protein (CRABP and CRABP II). Northern and Western blot analysis of the uteri revealed a peak of CRBP during diestrus and a peak of CRABP during proestrus, whereas CRABP II peaked sharply during estrus. Immunohistochemical studies showed CRABP II localized to the luminal epithelium, while both CRBP and CRABP were observed only in the smooth muscle layers of the uterus. In the ovary, CRABP was not detected, while CRBP levels remained relatively constant throughout the cycle and CRABP II peaked slightly during metestrus. CRBP in the ovary was localized to the oocytes, nearby granulosa cells, and some regions of stroma. CRABP II was found predominantly in the granulosa cells of mature follicles and early corpora lutea, as well as some regions of the stroma. These results suggest a need for further studies to assess the role of retinol and its metabolites in normal uterine function and ovarian follicular development.
Vitamin A (retinol) and retinoic acid are necessary for the maintenance of the female reproductive system of higher animals. Our previous work has demonstrated cell specific expression of cellular retinoic acid-binding protein (CRABP) and cellular retinoic-acid binding protein(II) [CRABP(II)] in the uterus of the rat. CRABP(II) expression was shown to be induced in the uterine surface epithelial cells by treatment of prepubertal rats with pregnant mare serum gonadotropin (PMSG). Here we report that, after PMSG treatment, collected uteri had markedly higher levels of retinoic acid than did the uteri of prepubertal rats treated with the control vehicle. Smooth muscle, stromal, and epithelial cells were then cultured from uteri from such animals and provided with retinol or with the retinol/retinol-binding protein complex. Retinoic acid production, analyzed by high-performance liquid chromatography, was observed for the epithelial cells from the uteri of prepubertal animals treated with PMSG, cells previously shown to express CRABP(II) and confirmed here to continue to express it in culture. Little or no retinoic acid was produced by cultured epithelial cells from the prepubertal uteri [shown previously to be negative for CRABP(II)] or by smooth muscle and stromal cells taken from uteri of prepubertal or PMSG-treated rats (shown previously to express CRABP). Retinoic acid production by uterine epithelial cells [and CRABP(II) expression] was also observed if the prepubertal rat was treated with estrogen before cell collection. At no time did cells expressing CRABP exhibit significant retinoic acid synthesis. Thus, this system revealed an important difference in retinoid metabolism between cells expressing CRABP and CRABP(II) and suggests CRABP(II) may participate in retinoic acid production and/or secretion.
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.