Rail fastener is a crucial component equipment to ensure the safe operation of the train, and it is very paramount to detect the loose state of the fastener. In this paper, the vertical vibration acceleration signal of wheelset is taken as the research object, and the loose state of fastener is identified by separating and calculating the key IMF energy entropy. Firstly, based on the finite element theory and the principle of multibody dynamics, the rigid-flexible coupling simulation model of vehicle track is established. Then, the vertical vibration acceleration signals of the wheelset under the speed of 200 km/h are obtained by setting the different loosening degrees of the fastener. Finally, we use optimized HHT to process signals, and the orthogonal empirical mode decomposition method (OEMD) is proposed to optimize the orthogonality of the intrinsic mode function, to eliminate the IMF component having poor correlation with the original signal; the Hilbert time spectrum and information entropy theory are combined to calculate the energy entropy of the key IMF, and the HHT energy entropy evaluation algorithm of the vertical acceleration response signal of the train wheelset is proposed. The simulation results show that the HHT energy entropy of 100% fastener looseness is less than 25%, 50%, and 75%, decreasing trend. The algorithm can recognize the looseness of track fastener through the experiment under different working conditions.
The speed profile tracking calculation of high-speed maglev trains is mainly affected by running resistance. In order to reduce the adverse effects and improve tracking accuracy, this paper presents a maglev train operation control method based on a fractional-order sliding mode adaptive and diagonal recurrent neural network (FSMA-DRNN). First, the kinematic resistance equation is established due to the three types of resistance that occur during the actual operation of a train: air resistance, guide eddy current resistance, and suspension frame generator coil resistance. Then, the FSMA-DRNN control law and parameter update law are designed, and a FSMA-DRNN operation controller is composed of three parts: speed feed forward, fractional-order sliding mode adaptive equivalent control, and diagonal recurrent neural network resistance compensation. Furthermore, by using the designed operation controller, it is proven effective by the Lyapunov theory for the stability of the closed-loop control system. Apart from the proposed theoretical analysis, the proposed approaches are verified by experiments on the high-speed maglev hardware-in-the-loop simulation platform Rt-Lab, in line with the 29.86 km test line and a five-car train from the Shanghai maglev, showing the effectiveness and superiority for operation optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.