Prostomatean ciliates play important roles in the flow of material and energy in aquatic microbial food webs, and thus have attracted wide attention for over a century. Their taxonomy and systematics are, however, still poorly understood because of their relatively few taxonomically informative morphological characters. In this study, two new prostomateans, Lagynus binucleatus sp. n. and Foissnerophrys alveolata gen. n., sp. n., collected from a freshwater pool and the intertidal zone of a sandy beach, respectively, in Qingdao, China, are investigated using living observation, protargol staining, and SSU rRNA gene sequencing methods. The genus Lagynus is redefined, and the new species L. binucleatus sp. n. is established based on significant morphological differences with similar forms. Furthermore, a new genus, Foissnerophrys gen. n., is established based on a combination of morphological and molecular data with F. alveaolata sp. n. the type species by monotypy. The identities of intracellular prokaryotes of these two new species are discussed based on fluorescence in situ hybridization (FISH) data and newly obtained 16S rRNA gene sequences.
The morphology and phylogeny of two metopid ciliates, collected from anaerobic habitats in China, were investigated using live observation, protargol staining method, and SSU rDNA sequencing. The new species Metopus paravestitus nov. spec. can be distinguished by a combination of the following features: oblong cell with densely arranged ectobiotic prokaryotes perpendicular to cell surface, filiform intracytoplasmic structures packed in the anterior portion of the cell. Our work also demonstrates the wide geographical distribution of Metopus es (M€ uller, 1776) Lauterborn, 1916. The order Metopida is consistently depicted as a paraphylum in SSU rDNA phylogeny. Metopus paravestitus nov. spec. is closely related to its marine congeners than to freshwater forms. The present study confirms once again the non-monophyly of the genus Metopus and genus Metopidae. RECENTLY, there has been an increasing interest in the study of eukaryotic microorganisms in extreme environments, including anoxic and hypoxic habitats (Beaudoin
Armophorean ciliates constitute an important component of microeukaryotic community in anaerobic or hypoxic environments. Yet, their diversity remains poorly known due to under-sampling or the scarcity of knowledge. In this study, three metopid ciliates, i.e., Metopus paraes sp. n., Metopus spiculatus sp. n., and Metopus parapellitus sp. n., collected from coastal sediments in Qingdao and Rizhao, China, were investigated using live observation, protargol staining, and molecular phylogenetic methods. M. paraes sp. n. can be distinguished by its long caudal cilia. M. spiculatus sp. n. resembles M. vestitus in many ways, but differs mainly in having a beak-like preoral dome end and a conspicuous tail. The most remarkable features of M. parapellitus sp. n. include an ovate body shape, caudal cilia located at the rear end and right posterior body, and an adoral zone that never extends onto the dorsal surface. Sequence divergences supported the species identification of these three species. Phylogenetic analyses confirmed that the Metopus is not monophyletic, and first revealed that all marine species of Metopus form a well-supported clade. The clustering of these marine forms with M. es (type species) is not rejected by the AU test, which infers that the marine clade represents the genus Metopus together with M. es.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.