This paper studies the effect of extreme cooling and traditional cooling on the microstructure of high-strength steel during hot rolling by adjusting the cooling process, combining the theoretical calculation and the thermal simulation experiment, and using metallographic microscope, scanning electron microscope (SEM), and electron backscattered diffraction (EBSD) analysis methods in order to solve the problem of coil collapse in the production process of high-strength steel. The research results show that compared with the traditional cooling method, the front-section fast cooling mode can rapidly cool the hot-rolled sheet to the “nose tip” temperature of the ferrite transformation of the time-temperature-phase-transition (TTT) curve, which can promote the transformation of the material to ferrite, increase the proportion of ferrite, and make the grain size of the organization finer. It helps to improve the overall mechanical properties of the material and reduce coil collapse defects. The front-section fast cooling mode achieves good results in industrial application, the proportion of coil collapse reduces from 9.363% to 0.533%, and the problem of coil collapse is significantly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.