The development of low-cost, high-energy cathodes from nontoxic, broadly available resources is a big challenge for the next-generation rechargeable lithium or lithium-ion batteries. As a promising alternative to traditional intercalation-type chemistries, conversion-type metal fluorides offer much higher theoretical capacity and energy density than conventional cathodes. Unfortunately, these still suffer from irreversible structural degradation and rapid capacity fading upon cycling. To address these challenges, here a versatile and effective strategy is harnessed for the development of metal fluoride-carbon (C) nanocomposite nanofibers as flexible, free-standing cathodes. By taking iron trifluoride (FeF 3 ) as a successful example, assembled FeF 3 -C/Li cells with a high reversible FeF 3 capacity of 550 mAh g −1 at 100 mA g −1 (three times that of traditional cathodes, such as lithium cobalt oxide, lithium nickel cobalt aluminum oxide, and lithium nickel cobalt manganese oxide) and excellent stability (400+ cycles with littleto-no degradation) are demonstrated. The promising characteristics can be attributed to the nanoconfinement of FeF 3 nanoparticles, which minimizes the segregation of Fe and LiF upon cycling, the robustness of the electrically conductive C network and the prevention of undesirable reactions between the active material and the liquid electrolyte using the composite design and electrolyte selection.
Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.
NiCo2S4@CoSx core/shell nanotube arrays have been successfully synthesized and used to optimize the capacitive performance of electrochemical supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.