IntroductionHepatocellular carcinoma (HCC) has very poor prognosis due to its immunosuppressive properties. An effective measure to regulate tumor immunity is brachytherapy, which uses 125I seeds planted into tumor. T cell immune receptors with immunoglobulin and ITIM domains (TIGIT) is highly expressed in HCC. The TIGIT-targeted probe is expected to be an effective tool for indicating immunomodulation of 125I seed brachytherapy in HCC. In this study, We constructed a novel peptide targeting TIGIT to evaluate the immune regulation of 125I seed brachytherapy for HCC by near-infrared fluorescence (NIRF).MethodsExpression of TIGIT by immunofluorescence (IF) and flow cytometry (FCM) in different part and different differentiated human liver cancer tissues was verified. An optical fluorescence probe (Po-12) containing a NIRF dye and TIGIT peptide was synthesized for evaluating the modulatory effect of 125I seed brachytherapy. Lymphocytes uptake by Po-12 were detected by FCM and confocal microscopy. The distribution and accumulation of Po-12 in vivo were explored by NIRF imaging in subcutaneous and orthotopic tumors. IHC and IF staining were used to verify the expression of TIGIT in the tumors.ResultsTIGIT was highly expressed in HCC and increased with tumor differentiation. The dye-labeled peptide (Po-12) retained a stable binding affinity for the TIGIT protein in vitro. Accumulation of fluorescence intensity (FI) increased with time extended in subcutaneous H22 tumors, and the optimal point is 1 h. TIGIT was highly expressed on lymphocytes infiltrated in tumors and could be suppressed by 125I seed brachytherapy. Accumulation of Po-12-Cy5 was increased in tumor-bearing groups while declined in 125I radiation group.
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies globally. Peptide-based tumor-targeted imaging is critical for ESCC imaging. In this study, we aim to identify a peptide-targeting IGF2BP2 that specifically binds to human ESCC for near-infrared imaging of esophageal cancer. Applying phage display techniques, we identified a peptide target for IGF2BP2 which was confirmed to be highly expressed in ESCC cell lines or tumor tissue and may serve as an imaging target for ESCC. We conjugated the peptide to the NIRF group, Cy5, and further evaluated the targeting efficacy of the probe at a cellular level and in animal tumor models. The Cy5 conjugated peptide (P12-Cy5) showed a high binding affinity to human ESCC cells in vitro. In vivo, optical imaging also validated the tumor-targeting ability of P12-Cy5 in KYSE-30-bearing subcutaneous ESCC tumor models. Furthermore, the results of biodistribution showed a significantly higher fluorescence intensity in tumors compared to scrambled peptide, which is consistent with in vivo observations. In summary, an IGF2BP2-targeted peptide was successfully identified. In vitro and in vivo experiments confirmed that P12-Cy5 has high affinity, specificity and tumor-targeting properties. Thus, P12-Cy5 is a prospective NIR probe for the imaging of ESCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.