Background: After treatment of intrauterine adhesions, the rate of re-adhesion is high and the pregnancy outcome unpredictable and unsatisfactory. This study established and verified a decision tree predictive model of live birth in patients after surgery for moderate-to-severe intrauterine adhesions (IUAs).Methods: A retrospective observational study initially comprised 394 patients with moderate-to-severe IUAs diagnosed via hysteroscopy. The patients underwent hysteroscopic adhesiolysis from January 2013 to January 2017, in a university-affiliated hospital. Follow-ups to determine the rate of live birth were conducted by telephone for at least the first postoperative year. A classification and regression tree algorithm was applied to establish a decision tree model of live birth after surgery.Results: Within the final population of 374 patients, the total live birth rate after treatment was 29.7%. The accuracy of the model was 83.8%, and the area under the receiver operating characteristic curve (AUC) was 0.870 (95% CI 7.699-0.989). The root node variable was postoperative menstrual pattern. The predictive accuracy of the multivariate logistic regression model was 70.3%, and the AUC was 0.835 (95% CI 0.667-0.962).Conclusions: The decision tree predictive model is useful for predicting live birth after surgery for IUAs; postoperative menstrual pattern is a key factor in the model. This model will help clinicians make appropriate clinical decisions during patient consultations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.