Objective: To investigate the characteristics and prognostic factors in the elderly patients with COVID-19. Methods: Consecutive cases over 60 years old with COVID-19 in Renmin Hospital of Wuhan University from Jan 1 to Feb 6, 2020 were included. The primary outcomes were death and survival till March 5. Data of demographics, clinical features, comorbidities, laboratory tests and complications were collected and compared for different outcomes. Cox regression was performed for prognostic factors. Results: 339 patients with COVID-19 (aged 71 ±8 years,173 females (51%)) were enrolled, including 80 (23.6%) critical, 159 severe (46.9%) and 100 moderate (29.5%) cases. Common comorbidities were hypertension (40.8%), diabetes (16.0%) and cardiovascular disease (15.7%). Common symptoms included fever (92.0%), cough (53.0%), dyspnea (40.8%) and fatigue (39.9%). Lymphocytopenia was a common laboratory finding (63.2%). Common complications included bacterial infection (42.8%), liver enzyme abnormalities (28.7%) and acute respiratory distress syndrome (21.0%). Till Mar 5, 2020, 91 cases were discharged (26.8%), 183 cases stayed in hospital (54.0%) and 65 cases (19.2%) were dead. Shorter length of stay was found for the dead compared with the survivors (5 (3-8) vs. 28 (26-29), P < 0.001). Symptoms of dyspnea (HR 2.35, P = 0.001), comorbidities including cardiovascular disease (HR 1.86, P = 0.031) and chronic obstructive pulmonary disease (HR 2.24, P = 0.023), and acute respiratory distress syndrome (HR 29.33, P < 0.001) were strong predictors of death. And a high level of lymphocytes was predictive of better outcome (HR 0.10, P < 0.001). Conclusions: High proportion of severe to critical cases and high fatality rate were observed in the elderly COVID-19 patients. Rapid disease progress was noted in the dead with a median survival time of 5 days after admission. Dyspnea, lymphocytopenia, comorbidities including cardiovascular disease and chronic obstructive pulmonary disease, and acute respiratory distress syndrome were predictive of poor outcome. Close monitoring and timely treatment should be performed for the elderly patients at high risk.
Our aim was to study the effect of lower airway infection on clinical parameters, pulmonary function tests, and inflammation in clinically stable infants and young children with cystic fibrosis (CF). To accomplish this goal, a prospective cohort of screened CF patients under 4 years of age were studied, using elective anesthesia and intubation for: passive respiratory mechanics (single breath occlusion passive deflation) and lung volumes (nitrogen washout), under neuromuscular blockade; and bronchoalveolar lavage (BAL) of 3 main bronchi for cytology, cytokine interleukin (IL)-8, and quantitative microbiology. There were 22 children studied, with a mean age of 23.2 months (6.7-44 months). A greater relative risk of lower airway pathogens was associated with prior respiratory admission (3.60, 95% confidence interval [CI] 2.87-4.51), history of asthma (1.75, 95% CI 1.52-2.03), and chronic symptoms (1.50, 95% CI 1.23-1.83), especially wheeze (1.88, 95% CI 1.61-2.19). Lower respiratory pathogens (> or = 10 cfu/ml BAL) were found in 14 out of 22, and greater than 10(5) cfu/ml in 8 out of 22 subjects. The level of pathogens in BAL (log10 cfu/ml) explained 78% of the variability in percent neutrophils and 34% of the variability in IL-8 levels. Pathogen level also correlated with pulmonary function tests of specific respiratory system compliance (r -0.49, p = 0.02) and functional residual capacity over total lung capacity (r 0.49, p = 0.03). We conclude that the presence of pathogens in the lower airways correlated with levels of inflammation, respiratory system compliance, and degree of air trapping.
Alzheimer’s disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.