Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) worldwide and causes serious health sequelae such as cervicitis, pelvic inflammatory disease, and even infertility if ascending from the lower to the upper female genital tract. Previous studies have revealed the pivotal role of vaginal microbiota in susceptibility to STIs. However, alterations in the vaginal microbiota in women who are infertile and infected with C. trachomatis remain unknown. This study used metagenomic analysis of sequenced 16S rRNA gene amplicons to examine the vaginal microbial profiles of women with tubal infertility who were C. trachomatis-negative and those who were C. trachomatis-positive pre- and post-antibiotic treatment. Women who were C. trachomatis-negative and deemed healthy were recruited as references of eubiosis and dysbiosis. Women with tubal infertility and C. trachomatis infection presented a unique Lactobacillus iners-dominated vaginal microbiota rather than one dominated by Lactobacillus crispatus and displayed a decrease in Lactobacillus, Bifidobacterium, Enterobacter, Atopobium, and Streptococcus, accompanied by decreased levels of cytokines such as interferon (IFN)-γ and interleukin (IL)-10. This altered vaginal microbiota could be restored with varying degrees after standard treatment for C. trachomatis. This shift could be a predictive vaginal microbiota signature for C. trachomatis infection among females with tubal infertility, while no significant differences in phylum, class, and operational taxonomic unit (OTU) levels were observed between women with tubal infertility who were C. trachomatis-negative and healthy controls. This is the first study to provide data on the association of vaginal microbiota with C. trachomatis infection among women with tubal infertility and highlights unprecedented potential opportunities to predict C. trachomatis infection.
Chlamydia trachomatis, the most common human pathogen that causes trachoma and sexually transmitted disease, has developed various strategies for inhibiting host cell apoptosis. Activation of the PI3K (phosphoinositide 3-kinase)/AKT-mediated MDM2 (murine double minute 2)-p53 pathway plays a prominent role in the apoptosis resistance arising from C. trachomatis infection. However, the precise upstream mechanisms by which C. trachomatis activates this pathway have not been adequately investigated. Here, we reveal that the secreted C. trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis in HeLa cells. This process requires the activation of the PI3K/AKT signaling pathway, thereby leading to phosphorylation and nuclear entry of MDM2, and p53 degradation. PI3 K inhibitor LY294002 and MDM2 inhibitor Nutlin-3a block Pgp3-induced inhibition of HeLa cell apoptosis, suggesting a critical role for the PI3K/AKT pathway and its effect on the MDM2-p53 axis in Pgp3 anti-apoptotic activity.
Chlamydial species are common intracellular parasites that cause various diseases, mainly characterized by persistent infection, which lead to inflammatory responses modulated by pattern recognition receptors (PRRs). The best understood PRRs are the extracellular Toll-like receptors, but recent significant advances have focused on two important proteins, NOD1 and NOD2, which are members of the intracellular nucleotide-binding oligomerization domain receptor family and are capable of triggering the host innate immune signaling pathways. This results in the production of pro-inflammatory cytokines, which is vital for an adequate host defense against intracellular chlamydial infection. NOD1/2 ligands are known to derive from peptidoglycan, and the latest research has resolved the paradox of whether chlamydial species possess this bacterial cell wall component; this finding is likely to promote in-depth investigations into the interaction between the NOD proteins and chlamydial pathogens. In this review, we summarize the basic characteristics and signal transduction functions of NOD1 and NOD2 and highlight the new research on the roles of NOD1 and NOD2 in the host defense against chlamydial infection.
Chlamydia trachomatis, an obligate intracellular pathogen, has various effective strategies to regulate host cell death signalling pathways that ensure completion of their growth cycle. Mitochondrial autophagy (mitophagy) is responsible for elimination of dysfunctional and impaired mitochondria, and this process plays a critical role in cell survival via restriction of the mitochondrial apoptotic pathway. However, the specific molecular mechanisms are not entirely understood. In the present study, we observed that pORF5 plasmid protein of C. trachomatis plays a crucial role in attenuating mitochondrial dysfunction and apoptosis. Knockdown high mobility group box 1 (HMGB1) by lentivirus suppressed pORF5-induced mitophagy and increased apoptosis, implying that pORF5 may participate in cell death signalling pathways via up-regulation of HMGB1. Thus, we concluded that up-regulation of HMGB1 is a pivotal event for C. trachomatis that manipulates mitophagy and apoptosis in order to establish a favourable environment supportive of Chlamydial growth, which should further promote our understanding of Chlamydial pathogenic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.