Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient’s demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Results. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. Conclusions. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.
Objective. To establish and verify the clinical prediction model of lung metastasis in renal cancer patients. Method. Kidney cancer patients from January 1, 2010, to December 31, 2017, in the SEER database were enrolled in this study. In the first section, LASSO method was adopted to select variables. Independent influencing factors were identified after multivariate logistic regression analysis. In the second section, machine learning (ML) algorithms were implemented to establish models and 10-foldcross-validation was used to train the models. Finally, receiver operating characteristic curves, probability density functions, and clinical utility curve were applied to estimate model’s performance. The final model was shown by a website calculator. Result. Lung metastasis was confirmed in 7.43% (3171 out of 42650) of study population. In multivariate logistic regression, bone metastasis, brain metastasis, grade, liver metastasis, N stage, T stage, and tumor size were independent risk factors of lung metastasis in renal cancer patients. Primary site and sequence number were independent protection factors of LM in renal cancer patients. The above 9 impact factors were used to develop the prediction models, which included random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), and logistic regression (LR). In 10-foldcross-validation, the average area under curve (AUC) ranked from 0.907 to 0.934. In ROC curve analysis, AUC ranged from 0.879–0.922. We found that the XGB model performed best, and a Web-based calculator was done according to XGB model. Conclusion. This study provided preliminary evidence that the ML algorithm can be used to predict lung metastases in patients with kidney cancer. This low cost, noninvasive and easy to implement diagnostic method is useful for clinical work. Of course this model still needs to undergo more real-world validation.
Purpose. Since the prognosis of renal cell carcinoma (RCC) patients with bone metastasis (BM) is poor, this study is aimed at using big data to build a machine learning (ML) model to predict the risk of BM in RCC patients. Methods. A retrospective study was conducted on 40,355 RCC patients in the SEER database from 2010 to 2017. LASSO regression and multivariate logistic regression analysis was performed to determine independent risk factors of RCC-BM. Six ML algorithm models, including LR, GBM, XGB, RF, DT, and NBC, were used to establish risk models for predicting RCC-BM. The prediction performance of ML models was weighed by 10-fold cross-validation. Results. The study investigated 40,355 patients diagnosed with RCC in the SEER database, where 1,811 (4.5%) were BM patients. Independent risk factors for BM were tumor grade, T stage, N stage, liver metastasis, lung metastasis, and brain metastasis. Among the RCC-BM risk prediction models established by six ML algorithms, the XGB model showed the best prediction performance ( AUC = 0.891 ). Therefore, a network calculator based on the XGB model was established to individually assess the risk of BM in patients with RCC. Conclusion. The XGB risk prediction model based on the ML algorithm performed a good prediction effect on BM in RCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.