BACKGROUND: Fusarium asiaticum is one of predominant pathogens of Fusarium head blight (FHB) in China. Pydiflumetofen (Pyd) is a novel succinate dehydrogenase inhibitor (SDHI) which has been commercialized in China for the controlling of wheat FHB since 2019. In the current study, a risk assessment of the pydiflumetofen-resistance selected in Fusarium asiaticum was investigated. RESULTS: One Pyd MR mutant [resistance factor (RF) < 80] and four Pyd HR mutants (RF > 3000) were generated by fungicidetaming from 1000 mycelial discs of the wild-type strain 2021. Nucleotide sequences alignment results of FaSdh from the wild-type strain and resistant mutants showed that all the mutations were categorized into three genotypes, i.e. FaSdhB H248Y from Pyd MR mutant, both FaSdhC 1 A64V and FaSdhC 1 R67K from Pyd HR mutants. All the resistant mutants possessed no fitness penalty based on the data of mycelial linear growth, conidiation and virulence. In addition, the FaSdhC 1 A64V mutants showed positive cross-resistance between pydiflumetofen and boscalid or thifluzamide, but no cross-resistance between pydiflumetofen and Y13149 or Y12196, while the FaSdhC 1 R67K mutants exhibited positive cross-resistance between pydiflumetofen and boscalid, thifluzamide or Y12196, and no cross-resistance between pydiflumetofen and Y13149. Furthermore, positive cross-resistance between the five tested SDHIs was detected in the FaSdhB H248Y mutants. CONCLUSION: The results suggest a moderate to high resistance risk of F. asiaticum to pydiflumetofen, and provide essential data for monitoring the emergence of resistance and resistance management strategies for pydiflumetofen, which will be useful for scientific application of this fungicide in China.
Chili anthracnose caused by Colletotrichum spp. is an annual production concern for growers in China. Sterol C14-demethylation inhibitors (DMIs, such as tebuconazole) have been widely used to control this disease for more than three decades. In the current study, of 48 isolates collected from commercial chili farms in Jiangsu Province of China during 2018 and 2019, 8 single-spore isolates were identified as Colletotrichum gloeosporioides and the rest were identified as C. acutatum. To determine whether the DMI resistance of isolates develops in the field, mycelial growth of the 48 isolates was measured in culture medium with and without tebuconazole. In all, 6 of the 8 C. gloeosporioides isolates were resistant to tebuconazole, but all 40 of the C. acutatum isolates were sensitive to tebuconazole. The fitness cost of resistance was low based on a comparison of fitness parameters between the sensitive and resistant isolates of C. gloeosporioides. Positive cross-resistance was observed between tebuconazole and difenconazole or propiconazole, but not prochloraz. Alignment results of the CgCYP51 amino acid sequences from the sensitive and resistant isolates indicated that mutations can be divided into three genotypes. Genotype I possessed four substitutions (V18F, L58V, S175P, and P341A) at the CgCYP51A gene but no substitutions at CgCYP51B, while genotype II had five substitutions (L58V, S175P, A340S, T379A, and N476T) at CgCYP51A, concomitant with three substitutions (D121N, T132A, and F391Y) at CgCYP51B. In addition, genotype III contained two substitutions (L58V and S175P) at CgCYP51A, concomitant with one substitution (T262A) at CgCYP51B. Molecular docking models illustrated that the affinity of tebuconazole to the binding site of the CgCYP51 protein from the resistant isolates was decreased when compared with binding site affinity of the sensitive isolates. Our findings provide not only novel insights into understanding the resistance mechanism to DMIs, but also some important references for resistance management of C. gloeosporioides on chili.
Fusarium graminearum is one of the phytopathogenic fungi causing cereal fusarium head blight worldwide. Flubeneteram (Flu) is a novel succinate dehydrogenase inhibitor (SDHI) which exhibits strong fungicidal activity against F. graminearum. In this study, four Flu-resistant (FluR) mutants were generated by fungicide domestication from the wildtype strain PH-1. Sequencing alignment results of FgSdh from PH-1 and FluR mutants showed that all the mutations could be categorized into three resistant genotypes. Genotype I had an A-to-T mutation at the −57 bp of the 5′ untranslated region (5′UTR) of FgSdhC 1 , while genotypes II and III carried nonsynonymous mutations conferring T77I or R86C in FgSdhC 2 , respectively. All the mutations conferring the Flu resistance and causing fitness penalty were validated. The genotype I mutant showed high Flu-resistance, while genotype II and III mutants exhibited low Flu resistance. Additionally, all the FluR genotypes showed distinct cross-resistance patterns among the five SDHIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.