We study the problem of identifying infection sources in a network based on the network topology, and a subset of infection timestamps. In the case of a single infection source in a tree network, we derive the maximum likelihood estimator of the source and the unknown diffusion parameters. We then introduce a new heuristic involving an optimization over a parametrized family of Gromov matrices to develop a single source estimation algorithm for general graphs. Compared with the breadth-first search tree heuristic commonly adopted in the literature, simulations demonstrate that our approach achieves better estimation accuracy than several other benchmark algorithms, even though these require more information like the diffusion parameters. We next develop a multiple sources estimation algorithm for general graphs, which first partitions the graph into source candidate clusters, and then applies our single source estimation algorithm to each cluster. We show that if the graph is a tree, then each source candidate cluster contains at least one source. Simulations using synthetic and real networks, and experiments using real-world data suggest that our proposed algorithms are able to estimate the true infection source(s) to within a small number of hops with a small portion of the infection timestamps being observed.
The spanning tree heuristic is a commonly adopted procedure in network inference and estimation. It allows one to generalize an inference method developed for trees, which is usually based on a statistically rigorous approach, to a heuristic procedure for general graphs by (usually randomly) choosing a spanning tree in the graph to apply the approach developed for trees. However, there are an intractable number of spanning trees in a dense graph. In this paper, we represent a weighted tree with a matrix, which we call a Gromov matrix. We propose a method that constructs a family of Gromov matrices using convex combinations, which can be used for inference and estimation instead of a randomly selected spanning tree. This procedure increases the size of the candidate set and hence enhances the performance of the classical spanning tree heuristic. On the other hand, our new scheme is based on simple algebraic constructions using matrices, and hence is still computationally tractable. We discuss some applications on network inference and estimation to demonstrate the usefulness of the proposed method. Index TermsGromov matrix, spanning tree, network inference and estimation
We study the problem of inferring network topology from information cascades, in which the amount of time taken for information to diffuse across an edge in the network follows an unknown distribution.Unlike previous studies, which assume knowledge of these distributions, we only require that diffusion along different edges in the network be independent together with limited moment information (e.g., the means). We introduce the concept of a separating vertex set for a graph, which is a set of vertices in which for any two given distinct vertices of the graph, there exists a vertex whose distance to them are different. We show that a necessary condition for reconstructing a tree perfectly using distance information between pairs of vertices is given by the size of an observed separating vertex set. We then propose an algorithm to recover the tree structure using infection times, whose differences have means corresponding to the distance between two vertices. To improve the accuracy of our algorithm, we propose the concept of redundant vertices, which allows us to perform averaging to better estimate the distance between two vertices. Though the theory is developed mainly for tree networks, we demonstrate how the algorithm can be extended heuristically to general graphs. Simulations using synthetic and real networks, and experiments using real-world data suggest that our proposed algorithm performs better than some current state-of-the-art network reconstruction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.