The high open circuit voltage is an attractive feature for the currently popular organic-inorganic hybrid perovskite solar cells. In this paper, by employing the macroscopic device model simulation, we investigate its origin for the planar heterojunction perovskite solar cells. Based on the calculated current density-voltage characteristics, it is revealed that compared to the excitonic solar cells, the fast thermal-activated exciton dissociation in the bulk due to the small exciton binding energy may improve the short circuit current and the fill factor, but its beneficial role on the open circuit voltage is marginal. The most significant contribution for the open circuit voltage comes from the reduced bimolecular recombination. In the perovskites, with the recombination prefactor many orders of magnitude smaller than that based on the Langevin's theory, the internal charge density level is significantly enhanced and the density gradient is removed, leading to the high quasi-Fermi level splitting and thus the small open circuit voltage loss. For the nonradiative recombination pathway due to the deep trap states, it may induce significant loss of open circuit voltage as the trap density is high, while for the moderately low density its effect on the open circuit voltage is small and negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.