SummaryStaphylococcal cell separation depends largely on the bifunctional autolysin Atl that is processed to amidase-R1,2 and R3-glucosaminidase. These murein hydrolases are targeted via repeat domains (R) to the septal region of the cell surface, thereby allowing localized peptidoglycan hydrolysis and separation of the dividing cells. Here we show that targeting of the amidase repeats is based on an exclusion strategy mediated by wall teichoic acid (WTA). In Staphylococcus aureus wild-type, externally applied repeats (R1,2) or endogenously expressed amidase were localized exclusively at the cross-wall region, while in DtagO mutant that lacks WTA binding was evenly distributed on the cell surface, which explains the increased fragility and autolysis susceptibility of the mutant. WTA prevented binding of Atl to the old cell wall but not to the cross-wall region suggesting a lower WTA content. In binding studies with ConcanavalinAfluorescein (ConA-FITC) conjugate that binds preferentially to teichoic acids, ConA-FITC was bound throughout the cell surface with the exception of the cross wall. ConA binding suggest that either content or polymerization of WTA gradually increases with distance from the cross-wall. By preventing binding of Atl, WTA directs Atl to the cross-wall to perform the last step of cell division, namely separation of the daughter cells.
All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.
Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all recycle the sugar N-acetylmuramic acid (MurNAc) of their peptidoglycan during growth in rich medium. They possess MurNAc-6-phosphate (MurNAc-6P) etherase (MurQ in E. coli) enzymes, which are responsible for the intracellular conversion of MurNAc-6P to N-acetylglucosamine-6-phosphate and d-lactate. By applying mass spectrometry, we observed accumulation of MurNAc-6P in MurNAc-6P etherase deletion mutants but not in either the isogenic parental strains or complemented strains, suggesting that MurQ orthologs are required for the recycling of cell wall-derived MurNAc in these bacteria. Quantification of MurNAc-6P in ΔmurQ cells of S. aureus and B. subtilis revealed small amounts during exponential growth phase (0.19 nmol and 0.03 nmol, respectively, per ml of cells at an optical density at 600 nm [OD600] of 1) but large amounts during transition (0.56 nmol and 0.52 nmol) and stationary (0.53 nmol and 1.36 nmol) phases. The addition of MurNAc to ΔmurQ cultures greatly increased the levels of intracellular MurNAc-6P in all growth phases. The ΔmurQ mutants of S. aureus and B. subtilis showed no growth deficiency in rich medium compared to the growth of the respective parental strains, but intriguingly, they had a severe survival disadvantage in late stationary phase. Thus, although peptidoglycan recycling is apparently not essential for the growth of Gram-positive bacteria, it provides a benefit for long-term survival.
Cambrian sedimentary rocks in the southern part of the South China Craton were derived from a source that lay to the south or southeast, beyond the current limits of the craton and which is no longer preserved nearby. U‐Pb ages and Hf isotope data on detrital zircons from the Cambrian sequence define two distinctive age peaks at 1120 Ma and 960 Ma, with εHf(t) values for each group identical to the coeval detrital zircons from Western Australia and the Tethyan Himalaya zone, respectively. The circa 1120 Ma detrital zircons were most likely derived from the Wilkes‐Albany‐Fraser belt between southwest Australia and Antarctica, whereas the circa 960 Ma detrital zircons could have been sourced from the Rayner‐Eastern Ghats belt between India and Antarctica. Derivation of detritus from these sources suggests that south China was located at the nexus between India, Antarctica, and Australia, along the northern margin of East Gondwana during the Cambrian.
Vaccines and antibody therapeutics targeting staphylococcal surface molecules have failed to achieve clinical efficacy against MRSA infection. Here, Thomer et al. show that the R domain of prothrombin directs fibrinogen to the surface of S. aureus, which generates a protective coat for the pathogen, inhibiting phagocytosis by immune cells. The use of R-specific antibodies allows for immune cell recognition and protects mice against lethal bloodstream infections by broad spectrum MRSA isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.