Drought is a major abiotic stress that limits wheat production worldwide. To ensure food security for the rapidly increasing world population, improving wheat yield under drought stress is urgent and relevant. In this study, an RNA-seq analysis was conducted to study the effect of drought on wheat transcriptome changes during reproductive stages under field conditions. Our results indicated that drought stress during early reproductive periods had a more severe impact on wheat development, gene expression and yield than drought stress during flowering. In total, 115,656 wheat genes were detected, including 309 differentially expressed genes (DEGs) which responded to drought at various developmental stages. These DEGs were involved in many critical processes including floral development, photosynthetic activity and stomatal movement. At early developmental stages, the proteins of drought-responsive DEGs were mainly located in the nucleus, peroxisome, mitochondria, plasma membrane and chloroplast, indicating that these organelles play critical roles in drought tolerance in wheat. Furthermore, the validation of five DEGs confirmed their responsiveness to drought under different genetic backgrounds. Functional verification of DEGs of interest will occur in our subsequent research. Collectively, the results of this study not only advanced our understanding of wheat transcriptome changes under drought stress during early reproductive stages but also provided useful targets to manipulate drought tolerance in wheat at different development stages.
Due to soil changes, high density planting, and the use of straw-returning methods, wheat common root rot (spot blotch), Fusarium crown rot (FCR), and sharp eyespot (sheath blight) have become severe threats to global wheat production. Only a few wheat genotypes show moderate resistance to these root and crown rot fungal diseases, and the genetic determinants of wheat resistance to these devastating diseases are poorly understood. This review summarizes recent results of genetic studies of wheat resistance to common root rot, Fusarium crown rot, and sharp eyespot. Wheat germplasm with relatively higher resistance are highlighted and genetic loci controlling the resistance to each disease are summarized.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. AbstractLeaf rust, caused by Puccinia triticina, is one of the most destructive fungal diseases in wheat production worldwide. The hypersensitive reaction (HR) is an important defence response against P. triticina infection. In this study, the physiological races 165 and 260 of P. triticina were combined with a line derived from the bread wheat cultivar Thatcher with the leaf rust resistance locus Lr26 to form compatible and incompatible combinations, respectively. Based on an RNA-Seq database of the interaction systems, a new wheat cysteine-rich receptor-like kinase gene, TaCRK2, is specifically induced and up-regulated in the incompatible combination. We identified that TaCRK2 was regulated in a Ca 2+ -dependent manner. Knockdown of TaCRK2 by virus-induced gene silencing and RNAi leads to a dramatic increase in HR area and the number of haustorial mother cells at the single infection site. In addition, urediniospores, a P. triticina-specific pathogenic marker in compatible combinations, were observed on leaf surfaces of silenced plants at approximately 15 days after inoculation in the incompatible combination. Moreover, transcription levels of TaPR1, TaPR2, and TaPR5 were obviously reduced in TaCRK2-silenced plants. TaCRK2 overexpression in Nicotiana benthamiana induced strong HR-like cell death. Finally, transient expression of green fluorescent protein fused with TaCRK2 in N. benthamiana indicated that TaCRK2 localizes in the endoplasmic reticulum. Thus, TaCRK2 plays an important role in the resistance to P. triticina infection and has a positive regulation effect on the HR cell death process induced by P. triticina. K E Y W O R D S cysteine-rich receptor-like protein kinase, hypersensitive reaction, Puccinia triticina, VIGS, wheat | 733 GU et al.
ABSTRACT. The genetic diversity and relationship of 42 tomato varieties sourced from different geographic regions was examined with EST-SSR markers. The genetic diversity was between 0.18 and 0.77, with a mean of 0.49; the polymorphic information content ranged from 0.17 to 0.74, with a mean of 0.45. This indicates a fairly high degree of diversity among these tomato varieties. Based on the cluster analysis using unweighted pair-group method with arithmetic average (UPGMA), all the tomato varieties fell into 5 groups, with no obvious geographical distribution characteristics despite their diverse sources. The principal component analysis (PCA) supported the clustering result; however, relationships among varieties were more complex in the PCA scatterplot than in the UPGMA dendrogram. This information about the genetic relationships between these tomato lines helps distinguish these 42 varieties and will be useful for tomato variety breeding and selection. We confirm that the EST-SSR marker system is useful for studying genetic diversity among tomato varieties. The high degree of polymorphism and the large number of bands obtained per assay shows that SSR is the most informative marker system for tomato genotyping for purposes of rights/protection and for the tomato industry in general. It is recommended that these varieties be subjected to identification using an SSR-based manual cultivar identification diagram strategy or other easy-to-use and referable methods so as to provide a complete set of information concerning genetic relationships and a readily usable means of identifying these varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.