Flag leaves, plant height (PH), and spike-related traits are key determinants contributing to yield potential in wheat. In this study, we developed a recombinant inbred line (RIL) population with 94 lines derived from the cross between 'AS985472' and 'Sumai 3.' A genetic map spanned 3553.69 cM in length were constructed using 1978 DArT markers. Severn traits including flag leaf width (FLW), flag leaf length (FLL), PH, anthesis date (AD), spike length (SL), spikelet number spike (SNS), and spike density (SD) were evaluated against this RIL population under three different environments. Combined phenotypic data and genetic map, we identified quantitative trait loci (QTL) for each trait. A total of four major and stably expressed QTLs for FLW, PH, and SD were detected on chromosomes 2D and 4B. Of them, the major QTLs individually explained 10.10-30.68% of the phenotypic variation. QTLs with pleiotropic effects were identified on chromosomes 4A and 6D as well. Furthermore, the genetic relationships between seven yield-related traits were detected and discussed. A few genes related to leaf growth and development at the interval of a major locus for FLW on chromosome 2D were predicated. Overall, the present study provided useful information for understanding the genetic basis of yield-related traits and will be useful for marker-assisted selection in wheat breeding.
In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the field. In order to investigate the allelopathy of the decomposed maize straw products on three soil-born diseases of wheat, culture dish and pot experiments were conducted and the compounds in the products were identified by gas chromatography-mass spectrometry. Culture dish experiments showed that the mycelial growth, sclerotia formation amount and total weight of Rhizoctonia cerealis were promoted at concentrations of 0.03, 0.06 and 0.12 g ml-1 and inhibited at concentration of 0.48 g ml-1 of the decomposed products. No significant effects were found of the product concentrations on average weight of the sclerotia. Mycelial growth of Gaeumannomyces graminis was promoted at almost all concentrations except the highest one. Mycelial growth and spore germination of Bipolaris sorokiniana were significantly inhibited by all concentrations of the decomposed products, with enhanced inhibition effects along with the increased concentrations. The length, number, and dry weight of roots together with the root superoxide dismutase activity were promoted by the lowest concentration (0.03 g ml-1), with a synthetic effect index of 0.012, and inhibited by other concentrations. The ion leakage of roots was increased and the root peroxidase activity of roots was lowered by all the treatments. Pot experiments revealed that occurrence of the Sharp Eyespot was reduced by 0.03 and 0.06 g ml-1 of decomposed products after irrigation. However, the incidence rates and disease indexes were significantly increased by 0.12, 0.24 and 0.48 g ml-1 of decomposed products. Our results indicated that incidence rates and disease indexes of the Take-all were significantly promoted after being irrigated with the decomposed products, while occurrences of the Common rot didn't change, significantly. GC-MS results showed that the compounds of the decomposed products included organic acids, esters, hydrocarbons, amides and aldehydes, with the proportions 25.26, 24.01, 17.22, 14.39 and 7.73%. Further analysis investigated that the allelochemicals identified in straw decomposed products contained p-hydroxybenzoic acid (9.21%), dibutyl phthalate (6.94%), 3-phenyl-2-acrylic (5.06%), 4-hydroxy 3,5-dimethoxybenzoic acid (2.26%), hexanoic acid (1.73%), 8-octadecenoic acid (1.06%), 3-(4-hydroxy-3-methoxy-phenyl)-2-acid (1.04%), 4-hydroxy-3-methoxy-benzoic acid (0.94%) and salicylic acid (0.94%).
ABSTRACT. In order to understand the effect of grain moisture of inbred lines at the silking and physiological maturity stages on kernel 2 Y.L. Qian et al. Genetics and Molecular Research 15 (3): gmr.15038151 dehydration rate, 59 maize inbred lines from six subgroups were selected. Grain moisture was measured and QTLs associated with kernel dehydration were mapped. A rapid dehydration evaluation and association analysis revealed eight inbred lines with faster dehydration rate, including Yuanwu 02, K36, Zhonger/O2, Lo1125, Han 49, Qi 319, Hua 160, and PH4CV. A single sequence repeat analysis using 85 pairs detected five QTLs with phenotypic variation contribution ≥10% in the permanent F2 generation populations Zheng 58 x S1776 and Chang 7-2 x K1131, which had LOD threshold values ≥ 3 in both 2013 and 2014. The chromosome region of qFkdr7b had not previously been reported and is preliminarily identified as a new major QTL. A false positive field verification of grain dehydration rate of 53 inbred lines indicated that the screening result of the rapid dehydration inbred lines by specific amplification with marker Phi114 was most similar to the field assessment result, followed by markers Phi127 and Phi029. The rapid dehydration lines selected based on primer Phi114 amplification were also similar to the field dehydration rate and can thus be used for molecular marker-assisted selection. A significant effort is needed to improve stress resistance and shorten the growth period via fast kernel dehydration in intermediate materials of the inbred lines K36, Zhonger/ O2, Lo1125, Han 49, Hua 160, and PH4CV, and further using the selected lines for new combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.