Polynitrogen compounds have been intensively studied for potential applications as high energy density materials, especially in energy and military fields. Here, using the swarm intelligence algorithm in combination with first-principles calculations, we systematically explored the variable stoichiometries of yttrium–nitrogen compounds on the nitrogen-rich regime at high pressure, where a new stable phase of YN10 adopting I4/m symmetry was discovered at the pressure of 35 GPa and showed metallic character from the analysis of electronic properties. In YN10, all the nitrogen atoms were sp2-hybridized in the form of N5 ring. Furthermore, the gravimetric and volumetric energy densities were estimated to be 3.05 kJ/g and 9.27 kJ/cm-1 respectively. Particularly, the calculated detonation velocity and pressure of YN10 (12.0 km/s, 82.7 GPa) was higher than that of TNT (6.9 km/s, 19.0 GPa) and HMX (9.1 km/s, 39.3 GPa), making it a potential candidate as a high-energy-density material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.