The poor dispersibility, strong interlayer interaction, and inferior crack resistance ability restrict the employment of graphene as a lubricant additive. Herein, we prepared fluorinated graphene with different F/C ratios by direct fluorination of multilayer graphene utilizing F. Among them, highly fluorinated graphene (HFG) with an F/C ratio of about 1.0 presented prominent thermal stability and excellent tribological performance as an oil-based lubricant additive, whose friction coefficient and wear rate had a 51.4 and 90.9% decrease compared to that of pristine graphene, respectively. It was confirmed that C-F bonds perpendicular to the graphene plane contributed to increasing the interlayer distance and tribological performance of fluorinated graphene, while the randomly oriented CF and CF groups did not count as influential, as demonstrated via X-ray diffraction, X-ray photoelectron spectroscopy, and polarized attenuated total reflection-Fourier transform infrared spectroscopy. Meanwhile, Raman measurements traced the formation process of integrated and stable HFG tribofilm during friction process, and the corresponding stability was attributed to the physical and chemical interactions between HFG and friction pairs. More interestingly, the outstanding crack resistance ability of HFG preserved the sheet structure from destruction due to decreased in-plane stiffness and out-plane stress, thus constructing the tough tribofilm. The simple and feasible preparation makes HFG a promising candidate as advanced lubricant in industrial fabrication.
The extensive deployment of the electrocatalytic CO 2 reduction reaction (CO 2 RR) is presently limited by the utilization of alkaline/neutral electrolytes in which carbonate formation severely reduces the carbon efficiency and electrolysis stability. By contrast, the CO 2 RR in a strong acid electrolyte can overcome these shortcomings, yet the hydrogen evolution reaction (HER) greatly outcompetes the CO 2 RR in acidic media. Herein, CO 2 reduction to HCOOH, a significant chemical intermediate in many industrial processes, was realized in strong acid (pH ≤ 1) through introducing K + cations into the electrolyte. The K + -assisted acidic CO 2 RR accordingly manufactured HCOOH with a high Faradaic efficiency of 92.2% @−1.23 V RHE and a commercially relevant current density of −237.1 mA cm −2 . More importantly, a high single-pass carbon efficiency of 27.4% for HCOOH production was demonstrated in acid, which exceeded the value obtained in the alkaline CO 2 RR. Further mechanistic studies demonstrated that K + can engineer the local microenvironment over the Bi catalyst surface by reducing the proton coverage to suppress the competing HER and creating local interaction to stabilize the *OCOH intermediate, which ultimately promotes high-efficiency CO 2 conversion to HCOOH in strong acidic media.
Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm−2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH−) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.
Advancing the development of electrocatalytic CO2 reduction reaction (CO2RR) to address the environmental issues caused by excessive consumption of fossil fuels requires rational design of remarkable electrocatalysts, where the identification of active sites and further understanding of structure–performance relationship are the bases. However, the notable dynamic evolution often appears on the catalysts, with typical examples of Cu‐based catalysts, under operating conditions, causing great difficulty in identifying the real active sites and further understanding the correlations between structure and catalytic property. In this context, understanding the dynamic evolution process of catalytically active sites during CO2RR is of particular importance, which inspires to organize the present review. Herein, the fundamental principles of dynamic evolution in CO2RR including thermodynamics and kinetics aspects, followed by the introduction of operando techniques employed to probe the evolution under operating conditions are first highlighted. The dynamic evolution behaviors, involving atomic rearrangement and change in chemical state, on typical catalysts are further discussed, with emphasis on the correlations between evolution behaviors and catalytic properties (activity, selectivity, and stability). The emerging CO2 pulsed electrolysis technique that behaves promise to manipulate the dynamic evolution and future opportunities are finally discussed.
Electrocatalytic CO2 reduction reaction (CO2RR) offers a promising approach to ameliorate the global warming and energy crisis. On the route to deploying this technology, tremendous efforts have been dedicated to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.