A preliminary experimental investigation was performed with a focus on the axial pressure oscillations of self-resonating pulsed waterjet under different impinging surfaces. Five target plates of different impinging surfaces were impinged by self-resonating pulsed waterjets at various standoff distances and under four inlet pressures. It was found that the geometry of impinging surface significantly affects the pressure oscillation peak and amplitude of self-resonating pulsed waterjet, and the influences largely depend on the inlet pressure. Both the pressure oscillation peak and the amplitude increase to their maximum and then drop with increasing standoff distance, which is regardless of the geometry of impinging surface. But the geometry influences the values of the optimum standoff distance and the oscillation peak and amplitude. Compared with the trend of pressure oscillation peak against standoff distance, the oscillation amplitude can be more obviously changed by the impinging surface. Moreover, an assumption that the geometry affects the pressure oscillation peak by the rebound waterjets and hydroacoustic waves has been proposed based on related literature. Further study should be conducted to clarify the relations between the axial pressure oscillation and the geometry of impinging surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.