Recently, piezoelectric characteristics have been a research focus for 2D materials because of their broad potential applications. Black phosphorus (BP) is a monoelemental 2D material predicted to be piezoelectric because of its highly directional properties and non‐centrosymmetric lattice structure. However, piezoelectricity is hardly reported in monoelemental materials owing to their lack of ionic polarization, but piezoelectric generation is consistent with the non‐centrosymmetric structure of BP. Theoretical calculations of phosphorene have explained the origin of piezoelectric polarization among P atoms. However, the disappearance of piezoelectricity in multilayer 2D material generally arises from the opposite orientations of adjacent atomic layers, whereas this effect is limited in BP lattices due to their spring‐shaped space structure. Here, the existence of in‐plane piezoelectricity is experimentally reported for multilayer BP along the armchair direction. Current–voltage measurements demonstrate a piezotronic effect in this orientation, and cyclic compression and release of BP flakes show an intrinsic current output as large as 4 pA under a compressive strain of −0.72%. The discovery of piezoelectricity in multilayer BP can lead to further understanding of this mechanism in monoelemental materials.
Ni-doped Prussian blue (PB) cathode material exhibited improved storage performance for sodium ions, suggesting an electrochemically activated C-coordinated Fe ion in PB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.