Arbuscular mycorrhizal (AM) fungi associated with plant roots play an essential role in the belowground ecological process in karst habitats with high spatial and substrate heterogeneity. However, the effects of AM fungi on root morphology and nutrient uptake under different soil patch sizes and gravel content in karst habitats are still unclear. A controlled experiment was conducted using a square device divided into 16 grid patches. This experiment had three treatments, including the mycorrhizal fungal treatment inoculated with (M+) or without Glomus etunicatum Becker & Gerd (M−), the patch heterogeneity treatment through the homogeneous patch (Homo), heterogeneity-large patch (Hetl) and heterogeneity-small patch (Hets), and substrate heterogeneity treatment through the gravel-free substrate (GF), gravel-low substrate (GL), and gravel-high substrate (GH). Root traits and nutrients of Bidens pilosa L were analyzed, and the result showed the AM fungi significantly increased the dry weight, length, surface area, average diameter, volume, tips, branching points, and N, P, and K acquisitions of B. pilosa roots, but significantly decreased the specific root length. The Hets with soil and gravel increased the dry weight, length, surface area, tips, branching points, and N, P, and K acquisitions of B. pilosa roots compared with Hetl regulated by AM fungi. The GL and GH treatments also increased the dry weight, length, surface area, tips, branching points, and N, P, and K acquisitions of B. pilosa roots compared with GF regulated by AM fungi. These results indicate that the B. pilosa roots’ nutritional acquisition benefits were higher in Hets mixed with gravel for its root morphological development regulated by AM fungi in karst soil. In conclusion, we suggest that soil patch heterogeneity with gravels promotes root morphological development and nutrient utilization to karst plants associated with arbuscular mycorrhizal fungi.
Arbuscular mycorrhizal (AM) fungi that promote plant growth and nutrient acquisition are essential for nutrient-deficient karst areas, while they inevitably regulate host plants jointly with indigenous microorganisms in natural soil. However, how indigenous microorganisms regulate AM-induced benefits on plant growth and nutrient acquisition remains unclear. In this study, the Bidens tripartita as the common plant species in the karst region was cultivated into three soil substrates treated by AM fungi inoculation (AMF), AM fungi inoculation combining with indigenous microorganisms (AMI), and the control without AM fungi and indigenous microorganisms (CK). The plant biomass and concentration of nitrogen (N) and phosphorus (P) were measured, and the transcriptomic analysis was carried out using root tissues. The results showed that AM fungi significantly enhanced the plant biomass, N, and P accumulation with the reduction of plants’ N/P ratio; however, the indigenous microorganisms offset the AM-induced benefits in biomass and N and P acquisition. In addition, there are 819 genes in differentially expressed genes (DEGs) of AMF vs. AMI ∩ AMF vs. CK, meaning that AM fungi induced these genes that were simultaneously regulated by indigenous microorganisms. Furthermore, the enrichment analysis suggested that these genes were significantly associated with the metabolic processes of organophosphate, P, sulfur, N, and arginine biosynthesis. Notably, 34 and 17 genes of DEGs were related to P and N metabolism, respectively. Moreover, the indigenous microorganisms significantly downregulated these DEGs, especially those encoding the PHO1 P transporters and the glnA, glutamate dehydrogenase 2 (GDH2), and urease as key enzymes in N assimilation; however, the indigenous microorganisms significantly upregulated genes encoding PHO84 inducing cellular response to phosphate (Pi) starvation. These regulations indicated that indigenous microorganisms restrained the N and P metabolism induced by AM fungi. In conclusion, we suggested that indigenous microorganisms offset nutrient benefits of AM fungi for host plants through regulating these genes related to P transport and N assimilation.
Aims Litter is the crucial carrier of soil nutrition transformation. The influence of arbuscular mycorrhizal (AM) fungi on nutrient acquisition in plants has been widely recognized. However, in nutrient-deficient karst habitat, how competitive plants utilize nutrients regulated by AM fungi via litter remains largely unknown. Methods The experimental treatments included the inoculation with or without Glomus etunicatum, the litter addition by the mixed leaves of Broussonetia papyrifera and Carpinus pubescens or no addition, and the competition through the intraspecific competition of B. papyrifera and C. pubescens respectively and the interspecific competition mixed both plants. Important Findings AM fungi differently affected plant on nutrient acquisition, increasing nutrients acquisitions of B. papyrifera in intra- and interspecific competitions while decreasing for C. pubescens. Litter presented opposite influences on N acquisitions of both plants in interspecific competition with AM fungi, being positive for C. pubescens and negative for B. papyrifera, respectively. Under the interaction of AM fungi and litter, nitrogen (N), phosphorus (P) and potassium (K) acquisitions by B. papyrifera and N acquisition by C. pubescens in interspecific competition were all greater than intraspecific competition. In the interspecific competition, the competitive ability of plants on nutrient absorption presented significant species difference, which of B. papyrifera on P and K was significantly increased, while was converse for C. pubescens on K. In conclusion, these results suggest that the interspecific competition presents greater nutrient facilitation compared to intraspecific competition through AM fungi interacting with litter for plants in karst soil.
Arbuscular mycorrhizal (AM) fungi, as beneficial soil microorganisms, inevitably interact with indigenous microorganisms, regulating plant growth and nutrient utilization in natural habitats. However, how indigenous microorganisms affect the benefits of growth and nutrition regulated by inoculated AM fungi for plants in karst ecosystem habitats remains unclear today. In this experiment, the Gramineae species Setaria viridis vs. Arthraxon hispidus and the Compositae species Bidens pilosa vs. Bidens tripartita exist in the initial succession stage of the karst ecosystem. These plant species were planted into different soil microbial conditions, including AM fungi soil (AMF), AM fungi interacting with indigenous microorganisms soil (AMI), and a control soil without AM fungi and indigenous microorganisms (CK). The plant biomass, nitrogen (N), and phosphorus (P) were measured; the effect size of different treatments on these variables of plant biomass and N and P were simultaneously calculated to assess plant responses. The results showed that AMF treatment differently enhanced plant biomass accumulation, N, and P absorption in all species but reduced the N/P ratio. The AMI treatment also significantly increased plant biomass, N and P, except for the S. viridis seedlings. However, regarding the effect size, the AM fungi effect on plant growth and nutrition was greater than the interactive effect of AM fungi with indigenous microorganisms. It indicates that the indigenous microorganisms offset the AM benefits for the host plant. In conclusion, we suggest that the indigenous microorganisms offset the benefits of inoculated AM fungi in biomass and nutrient accumulation for pioneer plants in the karst habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.