Elevated expression of RNA binding protein HNRNPC has been reported in cancer cells, while the essentialness and functions of HNRNPC in tumors were not clear. We showed that repression of HNRNPC in the breast cancer cells MCF7 and T47D inhibited cell proliferation and tumor growth. Our computational inference of the key pathways and extensive experimental investigations revealed that the cascade of interferon responses mediated by RIG‐I was responsible for such tumor‐inhibitory effect. Interestingly, repression of HNRNPC resulted in accumulation of endogenous double‐stranded RNA (dsRNA), the binding ligand of RIG‐I. These up‐regulated dsRNA species were highly enriched by Alu sequences and mostly originated from pre‐mRNA introns that harbor the known HNRNPC binding sites. Such source of dsRNA is different than the recently well‐characterized endogenous retroviruses that encode dsRNA. In summary, essentialness of HNRNPC in the breast cancer cells was attributed to its function in controlling the endogenous dsRNA and the down‐stream interferon response. This is a novel extension from the previous understandings about HNRNPC in binding with introns and regulating RNA splicing.
The eukaryotic multi-subunit RNA exosome complex plays crucial roles in 3′-to-5′ RNA processing and decay. Rrp6 and Ski7 are the major cofactors for the nuclear and cytoplasmic exosomes, respectively. In the cytoplasm, Ski7 helps the exosome to target mRNAs for degradation and turnover via a through-core pathway. However, the interaction between Ski7 and the exosome complex has remained unclear. The transaction of RNA substrates within the exosome is also elusive. In this work, we used single-particle cryo-electron microscopy to solve the structures of the Ski7-exosome complex in RNA-free and RNA-bound forms at resolutions of 4.2 Å and 5.8 Å, respectively. These structures reveal that the N-terminal domain of Ski7 adopts a structural arrangement and interacts with the exosome in a similar fashion to the C-terminal domain of nuclear Rrp6. Further structural analysis of exosomes with RNA substrates harboring 3′ overhangs of different length suggests a switch mechanism of RNA-induced exosome activation in the through-core pathway of RNA processing.
The long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) has been shown to regulate multiple cancer-related cellular activities including cell proliferation, apoptosis, and migration. In this study, we confirm that repression of NEAT1 induces DNA damage, disturbs the cell cycle, and arrests the proliferation of prostate cancer cells. By taking advantage of the prostate cancer tumor transcriptome profiles from The Cancer Genome Atlas, our data-mining pipeline identified a series of transcription factors (TF) whose regulatory activities on target genes depended on the level of NEAT1. Among them was putative TF CDC5L, which bound directly to NEAT1. Silencing NEAT1 in prostate cancer cells repressed the transcriptional activity of CDC5L, and RNA-seq and ChIP-seq analyses further revealed a handful of potential targets of CDC5L regulated by NEAT1 expression. One target of CDC5L, ARGN, mediated the strong phenotypic consequences of NEAT1 reduction, including DNA damage, cell-cycle dysregulation, and proliferation arrest. In summary, we have established the requirement of the CDC5L-AGRN circuit for the essential oncogenic role of NEAT1 in prostate cancer cells. An integrative methodology uncovers CDC5L-AGRN signaling as critical to the tumor-promoting function of long noncoding RNA NEAT1 in prostate cancer cells. .
A major part of the transcriptome complexity is attributed to multiple types of DNA or RNA fusion events, which take place within a gene such as alternative splicing or between different genes such as DNA rearrangement and trans-splicing. In the present study, using the RNA deep sequencing data, we systematically survey a type of non-canonical fusions between the RNA transcripts from the two opposite DNA strands. We name the products of such fusion events cross-strand chimeric RNA (cscRNA). Hundreds to thousands of cscRNAs can be found in human normal tissues, primary cells, and cancerous cells, and in other species as well. Although cscRNAs exhibit strong tissue-specificity, our analysis identifies thousands of recurrent cscRNAs found in multiple different samples. cscRNAs are mostly originated from convergent transcriptions of the annotated genes and their anti-sense DNA. The machinery of cscRNA biogenesis is unclear, but the cross-strand junction events show some features related to RNA splicing. The present study is a comprehensive survey of the non-canonical cross-strand RNA junction events, a resource for further characterization of the originations and functions of the cscRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.