TSC1 and TSC2 mutations account for the majority of tuberous sclerosis complex cases. The TSC1 and TSC2 proteins assemble into a complex that is stabilized by TBC1D7 through its direct interaction with the TSC1 coiled coil (CC) region. Loss of TBC1D7 is associated with intellectual disability and megalencephaly. Here, we determine the crystal structure of the complex between TBC1D7 and the C-terminal part (residues 939-992) of TSC1-CC. The structure reveals that two TSC1-CCs form a parallel homodimer, which results in the formation of two symmetric surfaces for interaction with TBC1D7. TBC1D7 employs its α4 and α5 helices to interact with the α1 helix of one TSC1 (939-992) molecule mainly through hydrophobic interactions, and simultaneously associates with the other TSC1 (939-992) molecule using the C-terminal tip of its α4 helix. Biochemical and cell biological data demonstrate that TBC1D7 indeed substantially stabilizes the homodimerization of TSC1-CC, and mutations to the critical interface residues greatly compromise this effect. Together, our data reveal the molecular mechanism underlying TBC1D7-mediated stabilization of TSC1 dimerization, and its contribution to the structural integrity of the holo-TSC complex.
Sedimentation velocity analytical ultracentrifugation is a powerful classical method to study protein self‐association processes in solution based on the size‐dependent macromolecular migration in the centrifugal field. This technique can elucidate the assembly scheme, measure affinities ranging from picomolar to millimolar Kd, and in favorable cases provide information on oligomer lifetimes and hydrodynamic shape. The present step‐by‐step protocols detail the essential steps of instrument calibration, experimental setup, and data analysis. Using a widely available commercial protein as a model system, the protocols invite replication and comparison with our results. A commentary discusses principles for modifications in the protocols that may be necessary to optimize application of sedimentation velocity analysis to other self‐associating proteins. ©2020 Wiley Periodicals LLC. Basic Protocol 1: Measurement of external calibration factors Basic Protocol 2: Sedimentation velocity experiment for protein self‐association Basic Protocol 3: Sedimentation coefficient distribution analysis in SEDFIT and isotherm analysis in SEDPHAT
Super elongation complex (SEC) is a positive regulator of RNA polymerase II, which is required for HIV-1 proviral transcription. AFF1/4 is the scaffold protein that recruits other components of SEC and forms dimer depending on its THD domain (TPRL with Handle Region Dimerization Domain). Here we report the crystal structure of the human AFF4-THD at the resolution of 2.4 Å. The α4, α5, and α6 of one AFF4-THD mediate the formation of a dimer and pack tightly against the equivalent part of the second molecule in the dimer of AFF-THD. Mutagenesis analysis revealed that single mutations of either Phe1014 or Tyr1096 of AFF4 to alanine impair the formation of the AFF4 dimer. In addition, transactivation assay also indicated that Phe1014 and Tyr1096 of AFF4 are critical to the transactivation activity of AFF4. Interestingly, the corresponding residues Phe1063 and Tyr1145 in AFF1 have an effect on the transactivation of HIV-1 provirus. However, such mutations of AFF1/4 have no effect on the interaction of AFF1/4 with other subunits of the SEC. Together, our data demonstrated that the dimerization of AFF1/4 is essential to transactivation of HIV-1 provirus.
Membrane proteins are involved in various cellular processes. However, purification of membrane proteins has long been a challenging task, as membrane protein stability in detergent is the bottleneck for purification and subsequent analyses. Therefore, the optimization of detergent conditions is critical for the preparation of membrane proteins. Here, we utilize analytical ultracentrifugation (AUC) to examine the effects of different detergents (OG, Triton X-100, DDM), detergent concentrations, and detergent supplementation on the behavior of membrane protein TmrA. Our results suggest that DDM is more suitable for the purification of TmrA compared with OG and TritonX-100; a high concentration of DDM yields a more homogeneous protein aggregation state; supplementing TmrA purified with a low DDM concentration with DDM maintains the protein homogeneity and aggregation state, and may serve as a practical and cost-effective strategy for membrane protein purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.