We recently demonstrated that renin-angiotensin system (RAS) overactivity during late gestation in rats is associated with increased kidney and urine levels of ANG-(1-7) and enhanced kidney immunostaining of ANG-(1-7) and angiotensin-converting enzyme 2 (ACE2). To understand the temporal-spatial changes in normal and hypertensive pregnancies, the renal distribution of ANG-(1-7) and ACE2 in association with kidney angiotensin peptides and ACE2 activity was examined in virgin, normal pregnant (NP; gestational days 5, 15, and 19) and reduced uterine perfusion pressure (RUPP at day 19) pregnant Sprague-Dawley rats. ANG-(1-7) and ACE2 immunocytochemical staining increased 1.8- and 1.9-fold and 1.7- and 1.8-fold, respectively, at days 15 and 19 of NP, compared with virgin rats. ANG-(1-7) and ANG II concentrations were increased in the kidney at 19 days of gestation. ACE2 activity measured using a fluorescent substrate was increased 1.9- and 1.9-fold in the cortex and 1.9- and 1.8-fold in the medulla at days 15 and 19 of NP. In the RUPP animals, ANG-(1-7) immunostaining and concentration were significantly decreased compared with 19-day NP rats. ACE2 activity was unchanged in the cortex and medulla of RUPP rats. In conclusion, during NP, the concurrent changes of ACE2 and ANG-(1-7) suggest that ACE2 plays an important role in regulating the renal levels of ANG-(1-7) at mid to late gestation. However, the decrease in renal ANG-(1-7) content in the absence of a concomitant decrease in ACE2 implicates the participation of other ANG-(1-7) forming or degrading enzymes during hypertensive pregnancy.
For oligonucleotide therapeutics, chemical modifications of the sugar-phosphate backbone are frequently used to confer drug-like properties. Because 2′-deoxy-2′-fluoro (2′-F) nucleotides are not known to occur naturally, their safety profile was assessed when used in revusiran and ALN-TTRSC02, two short interfering RNAs (siRNAs), of the same sequence but different chemical modification pattern and metabolic stability, conjugated to an N -acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Exposure to 2′-F-monomer metabolites was low and transient in rats and humans. In vitro , 2′-F-nucleoside 5′-triphosphates were neither inhibitors nor preferred substrates for human polymerases, and no obligate or non-obligate chain termination was observed. Modest effects on cell viability and mitochondrial DNA were observed in vitro in a subset of cell types at high concentrations of 2′-F-nucleosides, typically not attained in vivo . No apparent functional impact on mitochondria and no significant accumulation of 2′-F-monomers were observed after weekly administration of two GalNAc–siRNA conjugates in rats for ∼2 years. Taken together, the results support the conclusion that 2′-F nucleotides can be safely applied for the design of metabolically stabilized therapeutic GalNAc–siRNAs with favorable potency and prolonged duration of activity allowing for low dose and infrequent dosing.
NA interference (RNAi) therapeutics use an endogenous mechanism whereby short interfering RNAs (siRNAs) direct the RNA-induced silencing complex (RISC) to sequence matched target transcripts for knockdown 1 . Both lipid nanoparticles and N-acetylgalactosamine (GalNAc) conjugates are clinically validated and approved delivery strategies for liver targets [2][3][4][5][6][7][8] . Building on nearly 2 decades of siRNA design and chemistry optimization [9][10][11][12] , we demonstrate here that, with suitable delivery solutions, the RNAi pathway can be harnessed in extrahepatic tissues, such as the central nervous system (CNS), eye and lung. Multiple CNS diseases, representing some of the highest unmet medical needs and greatest therapeutic challenges, have been associated with dominant gain-of-function mutations, making them suitable candidates for an RNAi-based silencing approach. As such, chemically modified siRNAs have demonstrated potent and sustained silencing in rodents and non-human primates (NHPs); however, using an invasive intracerebroventricular (ICV) administration approach 13 that is not suitable for repeated dosing in humans. Furthermore, technologies enabling siRNA delivery across the blood-brain barrier following a less challenging systemic administration are similarly being explored [14][15][16][17] , which are, however, still in early stages of discovery. In the eye, intravitreal (IVT) dosing of siRNAs has been evaluated in late-stage clinical studies, with few safety concerns, but did not advance further due to lack of efficacy 18 . Recently, the Coronavirus Disease 2019 (COVID-19) pandemic has highlighted the importance of optimizing siRNA delivery to the lung for the treatment of emergent viral respiratory diseases. Although earlier programs have already shown potential clinical benefits of siRNA-based therapeutics in the lung 19 , 2′-O-hexadecyl (C16) conjugates demonstrate enhanced delivery and siRNA uptake into the alveolar and bronchiolar epithelium. Taken together, this work highlights that the combination of a C16 lipophilic modification with our fully chemically modified, metabolically stable siRNAs achieves efficient delivery to the CNS, eye and lung, resulting in a robust and durable gene silencing in rodents and NHPs, with a favorable safety profile. We think that these advances have the potential to generate multiple candidates for investigating clinical safety and efficacy in humans. ResultsOptimization of the siRNA conjugate design. Lipophilic moieties represent one of the earliest approaches to improve cellular uptake and delivery of antisense oligonucleotides (ASOs) and siRNAs to the liver and various other organ systems 20 , including the CNS [21][22][23] . We reasoned that, by carefully optimizing the lipophilicity of chemically modified siRNAs, we could enhance intracellular delivery without compromising broad biodistribution, potency and safety. We used the 2′ position of the ribose sugar backbone to introduce
Abstract.Rhodococcus equi infection was diagnosed in two goats from the same herd. At necropsy, numerous caseating granulomas were disseminated throughout the liver, lungs, abdominal lymph nodes, medulla of right humerus, and the right fifth rib of goat No. 1, and the liver of goat No. 2. Histopathologic examination confirmed the presence of multiple caseating granulomas in these organs. Numerous gram-positive and Giemsapositive coccobacilli were identified within the cytoplasm of macrophages. Aerobic bacterial cultures of the liver and lung from both goats yielded a pure growth of R. equi. R. equi antigens were immunohistochemically identified in caseating granulomas from both goats. However, the 15-to 17-kd virulence antigens of R. equi were not detected, suggesting possible infection by an avirulent strain of this organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.