Lead-barium glass is subject to a variety of corrosion reactions after burial. The microscopic morphology and compositional structure of ancient lead-barium glass excavated from the Yaozhuang Cemetery located in Liuhe District of Nanjing were analysed with optical microscopy, X-ray fluorescence spectrometry, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, fluorescent inverted microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy. The corrosion products included PbCO3, Pb(OH)Cl, CaHPO4(H2O)2 and BaS2. Based on the corrosion morphology and the corrosion products, it was concluded that the corrosion processes included microbial corrosion, surface chemical corrosion, and crack corrosion. This paper describes the corrosion processes of lead-barium glass relics and establishes the corresponding corrosion model. In addition, the results of this study deepen the understanding of the corrosion mechanisms for lead-barium glass and provide new insight into the corrosion mechanisms of excavated glass relics, which is also of great significance for the protection of lead-barium glass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.