Colloidal surface engineering is of particular importance to impart modular functionalities to the colloidal systems. Here, a layer of Mn/Ni layered hydroxides (Mn/Ni(OH)x LDHs) can be successfully coated on various colloidal particles, such as silica spheres, silica rods, ferrite nanocrystal supraparticles, as well as FeOOH nanorods. Such layered hydroxides have intrinsic oxidase‐mimetic activities, as demonstrated by catalytic oxidation of tetramethyl benzidine in the presence of oxygen. Furthermore, Mn/Ni(OH)x LDHs structure seems to capture bacteria (both Gram positive and Gram negative) and exhibit antibacterial properties in vitro. Moreover, local delivery of Mn/Ni‐LDH structure fights against infection and reverses delayed wound healing procedures in mice models. Importantly, such hierarchical structures may have strong adhesive properties to the bacteria, which may maximize the contact between Mn/Ni(OH)x LDHs and the bacteria's surface. Overall, the present versatile colloidal surface engineering strategy will bring new insights in the field of antibiotics for its high efficiency toward antibacterial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.