This study investigates (i) the role of orography in precipitation along and upstream of the Western Ghats (WG) and (ii) a diurnal cycle of precipitation in western India during the summer monsoon, using a high‐resolution meteorological model and a network of surface rain‐gauges over the WG. The Weather Research and Forecasting model (WRF‐ARW) was used to simulate the 2008, 2009 and 2010 summer monsoons at 5 km horizontal grid spacing and allows resolved convection, with initial and boundary conditions provided by ERAInterim. The highest daily mean precipitation is found immediate to the WG escarpment and coastal plain between 11.5° and 18°N, but areas receiving the most rainfall do not necessarily receive it most frequently. The greatest percentage of rainy days occurs over the escarpment of the WG and slightly inland, corresponding to the topography, and high percentages (over 75%) of rainy days occur along the coast, along the coastal plain and the WG. These findings are in agreement with several recent studies using high spatial resolution Tropical Rainfall Measuring Mission (TRMM) precipitation data. Analysis of WRF output at time increments of 30 min reveals a clear diurnal pattern of rainfall, with an early morning maximum offshore and afternoon maxima over inland regions that occur later in the day with distance inland. A weak land breeze circulation is observed, as nocturnal cooling of the land surface results in deceleration of westerly flow upstream of the WG. Offshore moisture convergence and destabilization of low‐level air results in the offshore morning maximum. Rainfall maxima over inland regions indicate that, while orography is the primary impetus for lift, rainfall is also convectively driven. Analysis of convective parameters and landsurface variables such as soil moisture and latent and sensible heat fluxes supports this weak land–sea breeze circulation embedded in prevailing westerly monsoonal flow.
Capsule Despite recognition of the importance of atmospheric science education research (ASER), barriers to conducting ASER exist, which are identified. Recommendations are made for growing and supporting the ASER community.
Educators can enrich their teaching with best practices, share resources, and contribute to the growing atmospheric science education research community by reading and participating in the scholarship of teaching and learning in atmospheric science. This body of scholarship has grown, particularly over the past fifteen years, and is now a sizable literature base that documents and exemplifies numerous teaching innovations in undergraduate atmospheric science education. This literature base benefits the entire atmospheric science community because graduates of atmospheric science programs are better prepared to enter the workforce. This literature base has not yet been examined, however, to see how well the evidence supports education practices in the atmospheric science education literature. In this study, we characterized that evidence and show that the majority of papers we reviewed share education innovations with anecdotal or correlational evidence of effectiveness. While providing useful practitioner knowledge and preliminary evidence of the effectiveness of numerous innovative teaching practices, opportunities exist for increasing readers’ confidence that the innovations caused the learning gains. Additional studies would also help move conclusions toward generalizability across academic institutions and student populations. We make recommendations for advancing atmospheric science education research and encourage atmospheric science educators to actively use the growing body of education literature as well as contribute to advancing atmospheric science education research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.