In this article, we present an approach which allows taking into account the effect of extreme values in the modeling of financial asset returns and in the valorisation of associated options. Specifically, the marginal distribution of asset returns is modelled by a mixture of two Gaussian distributions. Moreover, we model the joint dependence structure of the returns using a copula function, the extremal one, which is suitable for our financial data, particularly the extreme values copulas. Applications are made on the Atos and Dassault Systems actions of the CAC40 index. Monte Carlo method is used to compute the values of some equity options such as the call on maximum, the call on minimum, the digital option, and the spreads option with the basket (Atos, Dassault systems) as underlying.
In financial analysis, stochastic models are more and more used to estimate potential outcomes in a risky framework. This paper proposes an approach of modeling the dependence of losses on securities, and the potential loss of the portfolio is divided into sectors each including two subsectors. The Weibull model is used to describe the stochastic behavior of the default time while a nested class of Archimedean copulas at three levels is used to model the maximum of the value at risk of the portfolio.
In financial analysis risk quantification is essential for efficient portfolio management in a stochastic framework. In this paper we study the value at risk, the expected shortfall, marginal expected shortfall and value at risk, incremental value at risk and expected shortfall, the marginal and discrete marginal contributions of a portfolio. Each asset in the portfolio is characterized by a trend, a volatility and a price following a three-dimensional diffusion process. The interest rate of each asset evolves according to the Hull and White model. Furthermore, we propose the optimization of this portfolio according to the value at risk model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.