Abstract-Full-dimensional multiple-input multiple-output (FD-MIMO) systems, whereby each base station is equipped with a uniformly spaced rectangular antenna array (URA), provides a practical means of realizing massive multiple-input multiple-output systems. However, the spectral efficiency of URA is considerably lower than that of its uniformly spaced linear array counterpart having the same number of antenna elements. In this paper, we first introduce a discrete angular resolution metric for quantifying the low resolution of URA in the antenna-elevation domain. This motivates us to propose a novel antenna device design, referred to as the structured non-uniformly spaced rectangular array (NURA), in which the antenna elements are non-uniformly distributed in the elevationangle domain. Specifically, we conceive a structured NURA device for which the nonuniform distribution of the elevationdomain antenna elements is controlled by a single parameter. The design of the optimally structured NURA for the given nonlinear antenna-element-positioning function then becomes a single-parameter optimization, namely that of maximizing the spectral efficiency of the FD-MIMO system, which can be solved efficiently. Our simulation results demonstrate that our structured NURA design significantly outperforms the standard URA in terms of achievable spectral efficiency. Our proposed structured NURA design therefore offers an effective practical framework for enhancing the achievable performance of FD-MIMO systems.
The aim of this study was to solve the frequently occurring rotor-stator rub-impact fault in aero-engines without causing a significant reduction in efficiency. We proposed a fault mitigation scheme, using shape memory alloy (SMA) wire, whereby the tip clearance between the rotor and the stator is adjusted. In this scheme, an acoustic emission (AE) sensor is utilized to monitor the rub-impact fault. An active control actuator is designed with pre-strained two-way SMA wires, driven by an electric current via an Arduino control board, to mitigate the rub-impact fault once it occurs. In order to investigate the feasibility of the proposed scheme, a series of tests on the material properties of NiTi wires, including heating response rate, ultimate strain, free recovery rate, and restoring force, were carried out. A prototype of the actuator was designed, manufactured, and tested under various conditions. The experimental result verifies that the proposed scheme has the potential to mitigate or eliminate the rotor-stator rub-impact fault in aero-engines.
The aim of this study was to solve the frequently occurring rotorstator rub-impact fault in aero-engines without causing a significant reduction in efficiency. We proposed a fault mitigation scheme, using shape memory alloy (SMA) wire, whereby the tip clearance between the rotor and the stator is adjusted. In this scheme, an acoustic emission (AE) sensor is utilized to monitor the rub-impact fault. An active control actuator is designed with pre-strained two-way SMA wires, driven by an electric current via an Arduino control board, to mitigate the rub-impact fault once it occurs. In order to investigate the feasibility of the proposed scheme, a series of tests on the material properties of NiTi wires, including heating response rate, ultimate strain, free recovery rate, and restoring force, were carried out. A prototype of the actuator was designed, manufactured, and tested under various conditions. The experimental result verifies that the proposed scheme has the potential to mitigate or eliminate the rotor-stator rub-impact fault in aero-engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.