When a colloidal suspension droplet evaporates from a solid surface, it leaves a characteristic deposit in the contact region. These deposits are common and important for many applications in printing, coating, or washing. By the use of superamphiphobic surfaces as a substrate, the contact area can be reduced so that evaporation is almost radially symmetric. While drying, the droplets maintain a nearly perfect spherical shape. Here, we exploit this phenomenon to fabricate supraparticles from bidisperse colloidal aqueous suspensions. The supraparticles have a core–shell morphology. The outer region is predominantly occupied by small colloids, forming a close-packed crystalline structure. Toward the center, the number of large colloids increases and they are packed amorphously. The extent of this stratification decreases with decreasing the evaporation rate. Complementary simulations indicate that evaporation leads to a local increase in density, which, in turn, exerts stronger inward forces on the larger colloids. A comparison between experiments and simulations suggest that hydrodynamic interactions between the suspended colloids reduce the extent of stratification. Our findings are relevant for the fabrication of supraparticles for applications in the fields of chromatography, catalysis, drug delivery, photonics, and a better understanding of spray-drying.
Supraparticles consisting of nano- or microparticles have potential applications as, for example, photonic crystals, drug carriers, or heterogeneous catalysts. To avoid the use of solvent or processing liquid, one can make supraparticles by evaporating droplets of aqueous suspensions from super-liquid-repellent surfaces. Herein, a method to adjust the porosity of supraparticles is described; a high porosity is desired, for example, in catalysis. To prepare highly porous TiO2 supraparticles, polymer nanoparticles are co-dispersed in the suspension. Supraparticles are formed through evaporation of aqueous suspension droplets on superamphiphobic surfaces followed by calcination of the sacrificial polymer particles. The increase of porosity of up to 92% resulted in enhanced photocatalytic activity while maintaining sufficient mechanical stability.
The biocompatibility of biomaterials is essentially for its application. The aim of current study was to evaluate the biocompatibility of poly(lactic-co-glycolic acid) (PLGA)/gelatin/nanohydroxyapatite (n-HA) (PGH) nanofibers systemically to provide further rationales for the application of the composite electrospun fibers as a favorable platform for bone tissue engineering. The PGH composite scaffold with diameter ranging from nano- to micrometers was fabricated by using electrospinning technique. Subsequently, we utilized confocal laser scanning microscopy (CLSM) and MTT assay to evaluate its cyto-compatibility in vitro. Besides, real-time quantitative polymerase chain reaction (qPCR) analysis and alizarin red staining (ARS) were performed to assess the osteoinductive activity. To further test in vivo, we implanted either PLGA or PGH composite scaffold in a rat subcutaneous model. The results demonstrated that PGH scaffold could better support osteoblasts adhesion, spreading, and proliferation and show better cyto-compatibility than pure PLGA scaffold. Besides, qPCR analysis and ARS showed that PGH composite scaffold exhibited higher osteoinductive activity owing to higher phenotypic expression of typical osteogenic genes and calcium deposition. The histology evaluation indicated that the incorporation of Gelatin/nanohydroxyapatite (GH) biomimetics could significantly reduce local inflammation. Our data indicated that PGH composite electrospun nanofibers possessed excellent cyto-compatibility, good osteogenic activity, as well as good performance of host tissue response, which could be versatile biocompatible scaffolds for bone tissue engineering.
This article shows morphology-patterned stripes as a new platform for directing flow guidance of the fluid in microfluidic devices. Anisotropic (even unidirectional) spreading behavior due to anisotropic wetting of the underlying surface is observed after integrating morphology-patterned stripes with a Y-shaped microchannel. The anisotropic wetting flow of the fluid is influenced by the applied pressure, dimensions of the patterns, including the period and depth of the structure, and size of the channels. Fluids with different surface tensions show different flowing anisotropy in our microdevice. Moreover, the morphology-patterned surfaces could be used as a microvalve, and gas-water separation in the microchannel was realized using the unidirectional flow of water. Therefore, benefiting from their good performance and simple fabrication process, morphology-patterned surfaces are good candidates to be applied in controlling the fluid behavior in microfluidics.
Superhydrophobic surfaces have already been applied in anti‐fouling, water‐oil separation, liquid transportation, etc. Surfaces can be defined as superhydrophobic surfaces once they can support a water droplet with its spherical shape maintained and accompanied by an apparent contact angle larger than 150° and a rolling‐off angle below 10°. Such water repellent property is achieved by the synergetic action of hierarchical structures and the low‐surface energy of the substances constructing the surface. Structures with high aspect ratio always perform good superhydrophobicity. However, they are usually with poor mechanical stability. Since durability is one of the essential factors for practical use, exploiting robust superhydrophobic surfaces has attracted tremendous interest. During the past decade, great effort has been made in developing self‐healing superhydrophobic surfaces to improve the potential practice and broaden the application fields. An overview of the recent development of self‐healing superhydrophobic surfaces is provided in this review. The focus here is particularly on the fabrication process based on specific healing mechanisms and possible applications. Finally, an outlook on future fabrication techniques for durable superhydrophobic surfaces is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.