Background The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso. Methods Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains. Results The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX−M gene and the qnrB gene simultaneously. Conclusions This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.
The emergence and persistence of multidrug-resistant (MDR) diarrheagenic Escherichia coli (DEC) causing acute diarrhea is a major public health challenge in developing countries. The aim of this study was to evaluate the resistance phenotypes of DEC isolated from stool samples collected from children less than 5 years of age with acute diarrhea living in Ouagadougou/Burkina Faso. From August 2013 to October 2015, this study was carried out on 31 DEC strains of our study conducted in “Centre Médical avec Antenne Chirurgicale (CMA)” Paul VI and CMA of Schiphra. DEC were isolated and identified by standard microbiological methods and polymerase chain reaction (PCR) method was used to further characterize them. Antimicrobial susceptibility testing was done based on the disk diffusion method. DEC isolates were high resistant to tetracycline (83.9%), amoxicillin (77.4%), amoxicillin clavulanic acid (77.4%), piperacillin (64.5%), and colistin sulfate (61.3%). The most resistant phenotype represented was the extended spectrum β-lactamase (ESBL) phenotype (67.7%). Aminoglycosides were 100% active on enteroinvasive E. coli (EIEC) and enterohemorrhagic E. coli (EHEC). All the DEC isolates exhibited absolute (100%) sensitivity to ciprofloxacin. Monitoring and studying the resistance profile of DEC to antibiotics are necessary to guide probabilistic antibiotic therapy, especially in pediatric patients.
Diarrheagenic Escherichia coli (DEC) is important bacteria of children’s endemic and epidemic diarrhea worldwide. The aim of this study was to determine the prevalence of DEC isolated from stool samples collected from children with acute diarrhea living in Ouagadougou, Burkina Faso. From August 2013 to October 2015, stool samples were collected from 315 children under 5 years of age suffering from diarrhea in the “Centre Médical avec Antenne Chirurgicale (CMA)” Paul VI and the CMA of Schiphra. E. coli were isolated and identified by standard microbiological methods, and the 16-plex PCR method was used to further characterize them. Four hundred and nineteen (419) E. coli strains were characterized, of which 31 (7.4%) DEC pathotypes were identified and classified in five E. coli pathotypes: 15 enteroaggregative E. coli (EAEC) (48.4%), 8 enteropathogenic E. coli (EPEC) (25.8%) with 4 typical EPEC and 4 atypical EPEC, 4 enteroinvasive E. coli (EIEC) (12.9%), 3 enterohemorrhagic E. coli (EHEC) 9.67%, and 1 enterotoxigenic E. coli (ETEC) 3.2%. The use of multiplex PCR as a routine in clinical laboratory for the detection of DEC would be a useful mean for a rapid management of an acute diarrhea in children.
Background: This study aimed to characterize and test the antimicrobial susceptibility of Lactococcus lactis isolated in endodontic infections in Burkina Faso. Material and methods: This was a prospective study conducted at the Municipal Oral Health Center of Ouagadougou, Burkina Faso, from June to October 2014. Clinical data were collected using a questionnaire form. The method of streaking on selective medium was used to isolate bacteria. Identification was made using the API 20 Strep gallery. Antibiotic susceptibility was performed by the diffusion method on solid medium. Results: One hundred and twenty-five (125) patients were received with a significant proportion from the age group of 19 to 40 years (55.2%). Apical periodontitis accounted for 50.4% and cellulitis for 49.6% of cases. Lactococcus lactis ssp. lactis was identified in five exudate samples. Isolates were 100% resistant to cefixime and metronidazole, 80% to ceftriaxone, cefuroxime, cefotaxime, chloramphenicol and 60% to penicillin G, amoxicillin, amoxicillin clavulanic acid. A multidrug resistance of more than three families of antibiotics was noticed. No strains produced extended spectrum ß-lactamases. Conclusion: Lactococcus lactis is part of endodontic biofilm. The reported strong antibiotic resistance involving endodontic therapy will focus on the effect of the disinfectant solution and the mechanical action of the canal instruments.
Background: The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso.Methods: Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains.Results: The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX-M gene and the qnrB gene simultaneously.Conclusions: This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.