Despite the high theoretical specific capacity of 1675 mAh g−1, lithium–sulfur batteries (LSBs) are still far away from wide commercialization due to the poor sulfur/Li2S electroconductivity and the polysulfides shuttle effect. In order to alleviate the active materials shuttling, separators in LSBs are required to guarantee the fast lithium‐ion transfer as well as the strong polysulfides immobilization. Therefore, various functional materials have been employed to modify the separator to achieve this goal. Among them, metal–organic frameworks (MOFs) with easy morphology design and high ionic or electronic conductivity have been widely investigated. This review summarizes the recent advances of MOF‐based interlayer for LSBs separator functionalization. Original MOFs, MOF derivatives, and MOF composites are included in this discussion. The mechanism of the enhancement of the electrochemical performance of each modified separator is explicated. Furthermore, the prospect of this promising area is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.