Glyphosate, a nonselective herbicide and also the world's most widely used herbicide, inhibits 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme in the aromatic amino acid biosynthetic pathway. Because of its broad-spectrum and potent weed control and favorable environmental characteristics, attempts to engineer glyphosate resistance have been intensive in the past few decades. The use of at least three different mechanisms has conferred glyphosate resistance in normally sensitive crop species. Early work focused on progressive adaptation of cultured plant cells to stepwise increases in glyphosate concentrations. The resulting cells were resistant to glyphosate because of EPSPS overexpression, EPSPS gene amplification, or increased enzyme stability. Further work aimed to achieve resistance by transforming plants with glyphosate metabolism genes. An enzyme from a soil microorganism, glyphosate oxidoreductase (GOX), cleaves the nitrogen– carbon bond in glyphosate yielding aminomethylphosphonic acid. Another metabolism gene, glyphosateN-acetyl transferase (gat), acetylates and deactivates glyphosate. A third mechanism, and the one found in all currently commercial glyphosate-resistant crops, is the insertion of a glyphosate-resistant form of the EPSPS enzyme. Several researchers have used site-directed mutagenesis or amino acid substitutions of EPSPS. However, the most glyphosate-resistant EPSPS enzyme to date has been isolated fromAgrobacteriumspp. strain CP4 and gives high levels of resistance in planta. Weeds resistant to glyphosate have offered further physiological mechanisms for glyphosate resistance. Resistant field bindweed had higher levels of 3-deoxy-d-arbino-heptulosonate 7-phosphate synthase, the first enzyme in the shikimate pathway, suggesting that increased carbon flow through the shikimate pathway can provide glyphosate resistance. Resistant goosegrass has reduced translocation of glyphosate out of the treated area. Although glyphosate resistance has been achieved by numerous mechanisms, currently the only independent physiological mechanism to give adequate and stable resistance to glyphosate for commercialization of glyphosate-resistant crops has been glyphosate-resistant forms of EPSPS.
Five experiments were conducted during 2001 and 2002 in North Carolina to evaluate peanut injury and pod yield when glyphosate was applied to 10 to 15 cm diameter peanut plants at rates ranging from 9 to 1,120 g ai/ha. Shikimic acid accumulation was determined in three of the five experiments. Visual foliar injury (necrosis and chlorosis) was noted 7 d after treatment (DAT) when glyphosate was applied at 18 g/ha or higher. Glyphosate at 280 g/ha or higher significantly injured the peanut plant and reduced pod yield. Shikimic acid accumulation was negatively correlated with visual injury and pod yield. The presence of shikimic acid can be detected using a leaf tissue assay, which is an effective diagnostic tool for determining exposure of peanut to glyphosate 7 DAT.
Glyphosate-resistant (GR) crops have been sold commercially in the USA since 1996. The use of glyphosate alone or with conventional pre- and post-emergence herbicides with different modes of action gives growers many options for affordable, safe, easy, effective wide-spectrum weed control. Despite the overwhelming popularity of this technology, technical issues have surfaced from time to time as US growers adopt these crops for use on their farms. The types of concern raised by growers vary from year to year depending on the crop and the environment, but include perceptions of increased sensitivity to diseases, increased fruit abortion, reduced pollination efficiency, increased sensitivity to environmental stress, and differences in yield and agronomic characteristics between transgenic and sister conventional varieties. Although several glyphosate-resistant crops are commercially available, maize, soybean and cotton constitute the largest cultivated acreage and have likewise been associated with the highest number of technical concerns. Because glyphosate is rapidly translocated to and accumulates in metabolic sink tissues, reproductive tissues and roots are particularly vulnerable. Increased sensitivity to glyphosate in reproductive tissues has been documented in both glyphosate-resistant cotton and maize, and results in reduced pollen production and viability, or increased fruit abortion. Glyphosate treatments have the potential to affect relationships between the GR crop, plant pathogens, plant pests and symbiotic micro-organisms, although management practices can also have a large impact. Despite these potential technical concerns, this technology remains popular, and is a highly useful tool for weed control in modern crop production.
Experiments were conducted in the North Carolina State University Phytotron greenhouse and field locations in Clayton, Rocky Mount, and Lewiston-Woodville, NC, in 2002 to determine the effect of glyphosate on pollen viability and seed set in glyphosate-resistant (GR) corn. Varieties representing both currently commercial GR corn events, GA21 and NK603, were used in phytotron and field studies. All glyphosate treatments were applied at 1.12 kg ai ha−1 at various growth stages. Regardless of hybrid, pollen viability was reduced in phytotron and field studies with glyphosate treatments applied at the V6 stage or later. Scanning electron microscopy of pollen from affected treatments showed distinct morphological alterations correlating with reduced pollen viability as determined by Alexander stain. Transmission electron microscopy showed pollen anatomy alterations including large vacuoles and lower starch accumulation with these same glyphosate treatments. Although pollen viability and pollen production were reduced in glyphosate treatments after V6, no effect on kernel set or yield was found among any of the reciprocal crosses in the phytotron or field studies. There were also no yield differences among any of the hand self-pollinated (nontreated male × nontreated female, etc.) crosses. Using enzyme-linked immunosorbent assay to examine CP4-5-enolpyruvlshikimate-3-phosphate synthase expression in DKC 64-10RR (NK603) at anthesis, we found the highest expression in pollen with progressively less in brace roots, ear leaf, anthers, roots, ovaries, silks, stem, flag leaf, and husk.
Field trials were conducted in 2001 at the Tobacco Research Station near Oxford, NC, and in 2002 at the Lower Coastal Plains Research Station near Kinston, NC, to determine tobacco yield, injury, and shikimic acid accumulation in response to simulated glyphosate drift. Glyphosate was applied to 12- to 13-cm-high tobacco ‘K326’ early postemergence at 0, 9, 18, 35, 70, 140, 280, 560, and 1,120 (1×) g ai/ha. Crop injury was rated 7 and 35 d after treatment (DAT) and shikimic acid accumulation in leaves at 7 DAT, tobacco yield, and leaf grade index (whole-plant index of harvest interval leaf value) were also assessed. Shikimic acid accumulation and injury symptoms increased similarly as glyphosate rate increased. Glyphosate rates of 140 g/ha (0.125 of recommended rate) or higher resulted in significant crop injury, reduced tobacco yield, and decreased leaf grade index. Shikimic acid accumulation at 7 DAT was inversely related to tobacco yield. Shikimic acid accumulation was found to be an effective diagnostic tool to determine glyphosate drift in tobacco; however, in-season data are needed to correlate shikimic acid accumulation with yield loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.