FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.
q RSNA, 2015 Purpose:To determine if myeloperoxidase (MPO) is involved in epileptogenesis and if molecular nuclear imaging can be used to noninvasively map inflammatory changes in epileptogenesis. Materials and Methods:The animal and human studies were approved by the institutional review boards. Pilocarpine-induced epileptic mice were treated with 4-aminobenzoic acid hydrazide (n = 46), a specific irreversible MPO inhibitor, or saline (n = 42). Indium-111-bis-5-hydroxytryptamide-diethylenetriaminepentaacetate was used to image brain MPO activity (n = 6 in the 4-aminobenzoic acid hydrazide and saline groups; n = 5 in the sham group) by using single photon emission computed tomography/computed tomography. The role of MPO in the development of spontaneous recurrent seizures was assessed by means of clinical symptoms and biochemical and histopathologic data. Human brain specimens from a patient with epilepsy and a patient without epilepsy were stained for MPO. The Student t test, one-way analysis of variance, and Mann-Whitney and Kruskal-Wallis tests were used. Differences were regarded as significant if P was less than .05. Results:MPO and leukocytes increased in the brain during epileptogenesis (P , .05). Blocking MPO delayed spontaneous recurrent seizures (99.6 vs 142 hours, P = .016), ameliorated the severity of spontaneous recurrent seizures (P , .05), and inhibited mossy fiber sprouting (Timm index, 0.31 vs 0.03; P = .003). Matrix metalloproteinase activity was upregulated during epileptogenesis in an MPO-dependent manner (1.44 vs 0.94 U/mg, P = .049), suggesting that MPO acts upstream of matrix metalloproteinases. MPO activity was mapped during epileptogenesis in vivo in the hippocampal regions. Resected temporal lobe tissue from a human patient with refractory epilepsy but not the temporal lobe tissue from a patient without seizures demonstrated positive MPO immunostaining, suggesting high translational potential for this imaging technology. Conclusion:The findings of this study highlight an important role for MPO in epileptogenesis and show MPO to be a potential therapeutic target and imaging biomarker for epilepsy.q RSNA, 2015
An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (n = 20), and the mice were observed for up to six months after ligation. Sham-operated mice (n = 15) and mice induced with experimental autoimmune encephalomyelitis (n = 8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and 99mTc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (p = 0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (p = 0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.