Methamphetamine (METH) is an illicit drug that causes neuronal apoptosis in the mouse striatum, in a manner similar to the neuronal loss observed in neurodegenerative diseases. In the present study, injections of METH to mice were found to cause the death of enkephalin-positive projection neurons but not the death of neuropeptide Y (NPY)/nitric oxide synthase-positive striatal interneurons. In addition, these METH injections were associated with increased expression of neuropeptide Y mRNA and changes in the expression of the NPY receptors Y 1 and Y 2 . Administration of NPY in the cerebral ventricles blocked METH-induced apoptosis, an effect that was mediated mainly by stimulation of NPY Y 2 receptors and, to a lesser extent, of NPY Y 1 receptors. Finally, we also found that neuropeptide Y knock-out mice were more sensitive than wild-type mice to METH-induced neuronal apoptosis of both enkephalin-and nitric oxide synthase-containing neurons, suggesting that NPY plays a general neuroprotective role within the striatum. Together, our results demonstrate that neuropeptide Y belongs to the class of factors that maintain neuronal integrity during cellular stresses. Given the similarity between the cell death patterns induced by METH and by disorders such as Huntington's disease, our results suggest that NPY analogs might be useful therapeutic agents against some neurodegenerative processes.
Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cells have shown promising clinical responses in patients with relapsed/refractory multiple myeloma. Lenalidomide, an immunomodulatory drug, potentiates T cell functionality, drives antimyeloma activity, and alters the suppressive microenvironment; these properties may effectively combine with anti-BCMA CAR T cells to enhance function. Using an anti-BCMA CAR T, we demonstrated that lenalidomide enhances CAR T cell function in a concentration-dependent manner. Lenalidomide increased CAR T effector cytokine production, particularly under low CAR stimulation or in the presence of inhibitory ligand programmed cell death 1 ligand 1. Notably, lenalidomide also enhanced CAR T cytokine production, cytolytic activity, and activation profile relative to untreated CAR T cells in chronic stimulation assays. This unique potentiation of both short-term CAR T activity and long-term functionality during chronic stimulation prompted investigation of the molecular profile of lenalidomide-treated CAR T cells. Signatures from RNA sequencing and assay for transposase-accessible chromatin using sequencing indicated that pathways associated with T-helper 1 response, cytokine production, T cell activation, cell-cycle control, and cytoskeletal remodeling were altered with lenalidomide. Finally, study of lenalidomide and anti-BCMA CAR T cells in a murine, disseminated, multiple myeloma model indicated that lenalidomide increased CAR T cell counts in blood and significantly prolonged animal survival. In summary, preclinical studies demonstrated that lenalidomide potentiated CAR T activity in vivo in low-antigen or suppressive environments and delayed onset of functional exhaustion. These results support further investigation of lenalidomide and anti-BCMA CAR T cells in the clinic.
Recent advances in cancer treatment with checkpoint blockade of receptors such as CTLA-4 and PD-1 have demonstrated that combinations of agents with complementary immunomodulatory effects have the potential to enhance antitumor activity as compared to single agents. We investigated the efficacy of immune-modulatory interleukin-21 (IL-21) combined with checkpoint blockade in several syngeneic mouse tumor models. After tumor establishment, mice were administered recombinant mouse IL-21 (mIL-21) alone or in combination with blocking monoclonal antibodies against mouse PD-1 or CTLA-4. In contrast to monotherapy, IL-21 enhanced antitumor activity of mCTLA-4 mAb in four models and anti-PD-1 mAb in two models, with evidence of synergy for one or both of the combination treatments in the EMT-6 and MC38 models. The enhanced efficacy was associated with increased intratumoral CD8+ T cell infiltrates, CD8+ T cell proliferation, and increased effector memory T cells, along with decreased frequency of central memory CD8+ T cells. In vivo depletion of CD8+ T cells abolished the antitumor activities observed for both combination and monotherapy treatments, further supporting a beneficial role for CD8+ T cells. In all studies, the combination therapies were well tolerated. These results support the hypothesis that the combination of recombinant human IL-21 with CTLA-4 or PD-1 monoclonal antibodies could lead to improved outcomes in cancer patients.
Background: Autosomal recessive juvenile parkinsonism (AR-JP) is caused by mutations in the parkin gene which encodes an E3 ubiquitin-protein ligase. Parkin is thought to be critical for protecting dopaminergic neurons from toxic insults by targeting misfolded or oxidatively damaged proteins for proteasomal degradation. Surprisingly, mice with targeted deletions of parkin do not recapitulate robust behavioral or pathological signs of parkinsonism. Since Parkin is thought to protect against neurotoxic insults, we hypothesized that the reason Parkin-deficient mice do not develop parkinsonism is because they are not exposed to appropriate environmental triggers. To test this possibility, we challenged Parkin-deficient mice with neurotoxic regimens of either methamphetamine (METH) or 6-hydroxydopamine (6-OHDA). Because Parkin function has been linked to many of the pathways involved in METH and 6-OHDA toxicity, we predicted that Parkindeficient mice would be more sensitive to the neurotoxic effects of these agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.