We have conducted a multistage genomewide association study, using 1,620,742 single-nucleotide polymorphisms to systematically investigate the genetic factors influencing intrinsic skin pigmentation in a population of South Asian descent. Polymorphisms in three genes--SLC24A5, TYR, and SLC45A2--yielded highly significant replicated associations with skin-reflectance measurements, an indirect measure of melanin content in the skin. The associations detected in these three genes, in an additive manner, collectively account for a large fraction of the natural variation of skin pigmentation in a South Asian population. Our study is the first to interrogate polymorphisms across the genome, to find genetic determinants of the natural variation of skin pigmentation within a human population.
Keeping up with the rapidly growing literature has become virtually impossible for most scientists. This can have dire consequences. First, we may waste research time and resources on reinventing the wheel simply because we can no longer maintain a reliable grasp on the published literature. Second, and perhaps more detrimental, judicious (or serendipitous) combination of knowledge from different scientific disciplines, which would require following disparate and distinct research literatures, is rapidly becoming impossible for even the most ardent readers of research publications. Text mining -- the automated extraction of information from (electronically) published sources -- could potentially fulfil an important role -- but only if we know how to harness its strengths and overcome its weaknesses. As we do not expect that the rate at which scientific results are published will decrease, text mining tools are now becoming essential in order to cope with, and derive maximum benefit from, this information explosion. In genomics, this is particularly pressing as more and more rare disease-causing variants are found and need to be understood. Not being conversant with this technology may put scientists and biomedical regulators at a severe disadvantage. In this review, we introduce the basic concepts underlying modern text mining and its applications in genomics and systems biology. We hope that this review will serve three purposes: (i) to provide a timely and useful overview of the current status of this field, including a survey of present challenges; (ii) to enable researchers to decide how and when to apply text mining tools in their own research; and (iii) to highlight how the research communities in genomics and systems biology can help to make text mining from biomedical abstracts and texts more straightforward.
The life science industries (including pharmaceuticals, agrochemicals and consumer goods) are exploring new business models for research and development that focus on external partnerships. In parallel, there is a desire to make better use of data obtained from sources such as human clinical samples to inform and support early research programmes. Success in both areas depends upon the successful integration of heterogeneous data from multiple providers and scientific domains, something that is already a major challenge within the industry. This issue is exacerbated by the absence of agreed standards that unambiguously identify the entities, processes and observations within experimental results. In this article we highlight the risks to future productivity that are associated with incomplete biological and chemical vocabularies and suggest a new model to address this long-standing issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.