Carrier-mediated transporters play a critical role in xenobiotic disposition and transporter research is complicated by species differences and their selective tissue expression. The purpose of this study was to generate a comprehensive data set of xenobiotic transporter gene expression profiles in humans and the pre-clinical species mouse, rat, beagle dog and cynomolgus monkey. mRNA expression profiles of 50 genes from the ABC, SLC and SLCO transporter superfamilies were examined in 40 human tissues by microarray analyses. Transporter genes that were identified as enriched in the liver or kidney, or that were selected for their known roles in xenobiotic disposition, were then compared in 22 tissues across the five species. Finally, as clinical variability in drug response and adverse reactions may be the result of variability in transporter gene expression, variability in the expression of selected transporter genes in 75 human liver donors were examined and compared with the highly variable drug metabolizing enzyme CYP3A4.
The capacities of urinary trefoil factor 3 (TFF3) and urinary albumin to detect acute renal tubular injury have never been evaluated with sufficient statistical rigor to permit their use in regulated drug development instead of the current preclinical biomarkers serum creatinine (SCr) and blood urea nitrogen (BUN). Working with rats, we found that urinary TFF3 protein levels were markedly reduced, and urinary albumin were markedly increased in response to renal tubular injury. Urinary TFF3 levels did not respond to nonrenal toxicants, and urinary albumin faithfully reflected alterations in renal function. In situ hybridization localized TFF3 expression in tubules of the outer stripe of the outer medulla. Albumin outperformed either SCr or BUN for detecting kidney tubule injury and TFF3 augmented the potential of BUN and SCr to detect kidney damage. Use of urinary TFF3 and albumin will enable more sensitive and robust diagnosis of acute renal tubular injury than traditional biomarkers.
The Predictive Safety Testing Consortium's first regulatory submission to qualify kidney safety biomarkers revealed two deficiencies. To address the need for biomarkers that monitor recovery from agent-induced renal damage, we scored changes in the levels of urinary biomarkers in rats during recovery from renal injury induced by exposure to carbapenem A or gentamicin. All biomarkers responded to histologic tubular toxicities to varied degrees and with different kinetics. After a recovery period, all biomarkers returned to levels approaching those observed in uninjured animals. We next addressed the need for a serum biomarker that reflects general kidney function regardless of the exact site of renal injury. Our assay for serum cystatin C is more sensitive and specific than serum creatinine (SCr) or blood urea nitrogen (BUN) in monitoring generalized renal function after exposure of rats to eight nephrotoxicants and two hepatotoxicants. This sensitive serum biomarker will enable testing of renal function in animal studies that do not involve urine collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.