A family of unusual proteins is deposited in flat, structural platelets in reflective tissues of the squid Euprymna scolopes. These proteins, which we have named reflectins, are encoded by at least six genes in three subfamilies and have no reported homologs outside of squids. Reflectins possess five repeating domains, which are highly conserved among members of the family. The proteins have a very unusual composition, with four relatively rare residues (tyrosine, methionine, arginine, and tryptophan) comprising approximately 57% of a reflectin, and several common residues (alanine, isoleucine, leucine, and lysine) occurring in none of the family members. These protein-based reflectors in squids provide a marked example of nanofabrication in animal systems.
Peroxisomal proteins are synthesized in the cytoplasm and post-translationally translocated into the organelle. The role of chaperones and protein folding in peroxisomal protein transport is still unclear. Translocation of proteins into mitochondria requires that precursor proteins assume an extended conformation; cytosolic chaperones are thought to help maintain this conformation. In contrast, peroxisomal protein import does not require unfolding of the targeted protein. However, the molecular chaperones Hsp70 and Hsp40 may be important for translocation. We present several lines of evidence that show that plant peroxisomal protein import is enhanced by chaperones. First, peroxisomes isolated from heat-shocked pumpkin seedling tissues exhibited increased protein import relative to control peroxisomes. Second, antibodies raised against wheat germ cytosolic Hsp70 and Escherichia coli Hsp90 inhibited import of the peroxisomal protein isocitrate lyase. To our knowledge, this is the first time that Hsp90 has been directly implicated in a protein transport event. Third, peroxisomal proteins were immunoprecipitated by wheat germ Hsp70 antibodies. We also present results that suggest that the efficiency of peroxisomal protein import is influenced by the structure of the targeted protein; monomeric isocitrate lyase was imported more efficiently than oligomeric isocitrate lyase. Taken together, these data demonstrate that the assembly state of peroxisomal proteins and the chaperones that may mediate those states are both important for efficient peroxisomal protein import.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.