Although activating mutations of FGFR3 are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the phenotypic and signaling consequences of three FGFR3 mutations (S249C, Y375C, and K652E) in immortalized normal human urothelial cells (TERT-NHUC) and mouse fibroblasts (NIH-3T3). In TERT-NHUC, all mutant forms of FGFR3 induced phosphorylation of FRS2α and ERK1/2, but not AKT or SRC. PLCγ1 phosphorylation was only observed in TERT-NHUC expressing the common S249C and Y375C mutations, and not the rare K652E mutation. Cells expressing S249C and Y375C FGFR3 displayed an increased saturation density, related to increased proliferation and viability. This effect was significantly dependent on PLCγ1 signaling and undetectable in cells expressing K652E FGFR3, which failed to phosphorylate PLCγ1. In contrast to TERT-NHUC, expression of mutant FGFR3 in NIH-3T3 resulted in phosphorylation of Src and Akt. Additionally, all forms of mutant FGFR3 were able to phosphorylate Plcγ1 and induce morphological transformation, cell proliferation, and anchorage independent growth. Our results indicate that the effects of mutant FGFR3 are both cell type- and mutation-specific. Mutant FGFR3 may confer a selective advantage in the urothelium by overcoming normal contact inhibition of proliferation.
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that play key roles in proliferation, differentiation, and tumorigenesis. FGFR3 was identified as the major family member expressed in both normal human urothelium and cultured normal human urothelial (NHU) cells and was expressed as the IIIb isoform. We also identified a splice variant, FGFR3 #8-10, lacking exons encoding the COOH-terminal half of immunoglobulin-like domain III and the transmembrane domain. Previous reports have assumed that this is a cancer-specific splice variant. We showed that FGFR3 #8-10 is a normal transcript in NHU cells and is translated, N-glycosylated, and secreted. Primary urothelium expressed high levels of FGFR3 transcripts. In culture, levels were reduced in actively proliferating cells but increased at confluence and as cells approached senescence. Cells overexpressing FGFR3 IIIb showed FGF1-induced proliferation, which was inhibited by the addition of FGFR3 #8-10. In bladder tumor cell lines derived from aggressive carcinomas, there were significant alterations in the relative expression of isoforms including an overall decrease in the proportion of FGFR3 #8-10 and predominant expression of FGFR3 IIIc in some cases. In summary, alternative splicing of FGFR3 IIIb in NHU cells represents a normal mechanism to generate a transcript that regulates proliferation and in bladder cancer, the ratio of FGFR3 isoforms is significantly altered. (Cancer Res 2005; 65(22): 10441-9)
Deletion of all or part of chromosome 9q is the most common genetic alteration in all stages and grades of bladder cancer. DBCCR1 (deleted in bladder cancer chromosome region candidate 1) maps to the chromosome region 9q32-33, a candidate tumour suppressor locus for bladder cancer. Although no mutations of DBCCR1 have been detected in bladder tumours, expression of DBCCR1 is silenced by promoter hypermethylation in 50% of bladder cancer cell lines analysed. Here we sought to provide functional evidence to authenticate DBCCR1 as a tumour suppressor using gene-transfer methods. Exogenous expression of DBCCR1 protein or an HA epitopetagged fusion protein, HA-DBCCR1 in NIH3T3 cells and human bladder tumour cell lines resulted in suppression of proliferation. Cell cycle analyses in NIH3T3 cells revealed that DBCCR1-mediated growth inhibition was due to an increase in the number of cells in the G 1 phase of the cell cycle. The levels of apoptosis were not altered. These results demonstrate a role for DBCCR1 in cell cycle control, thereby supporting the hypothesis that this is the tumour suppressor gene targeted by 9q32-33 deletion in bladder cancer. Oncogene (2001) 20, 2956 ± 2964.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.