ObjectiveSeveral members of the angiopoietin-like (ANGPTL) family of proteins, including ANGPTL3 and ANGPTL8, regulate lipoprotein lipase (LPL) activity. Deficiency in either ANGPTL3 or ANGPTL8 reduces plasma triglyceride levels and increases LPL activity, whereas overexpression of either protein does the opposite. Recent studies suggest that ANGPTL8 may functionally interact with ANGPTL3 to alter clearance of plasma triglycerides; however, the nature of this interaction has remained elusive. We tested the hypothesis that ANGPTL8 forms a complex with ANGPTL3 and that this complex is necessary for the inhibition of vascular LPL by ANGPTL3.MethodsWe analyzed the interactions of ANGPTL3 and ANGPTL8 with each other and with LPL using co-immunoprecipitation, western blotting, lipase activity assays, and the NanoBiT split-luciferase system. We also used adenovirus injection to overexpress ANGPTL3 in mice that lacked ANGPTL8.ResultsWe found that ANGPTL3 or ANGPTL8 alone could only inhibit LPL at concentrations that far exceeded physiological levels, especially when LPL was bound to its endothelial cell receptor/transporter GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1). Physical interaction was observed between ANGPTL3 and ANGPTL8 when the proteins were co-expressed, and co-expression with ANGPTL3 greatly enhanced the secretion of ANGPTL8. Importantly, ANGPTL3–ANGPTL8 complexes had a dramatically increased ability to inhibit LPL compared to either protein alone. Adenovirus experiments showed that 2-fold overexpression of ANGPTL3 significantly increased plasma triglycerides only in the presence of ANGPTL8. Protein interaction assays showed that ANGPTL8 greatly increased the ability of ANGPTL3 to bind LPL.ConclusionsTogether, these data indicate that ANGPTL8 binds to ANGPTL3 and that this complex is necessary for ANGPTL3 to efficiently bind and inhibit LPL.
A validation study was conducted to determine the extent to which computational ankle contact finite element (FE) results agreed with experimentally measured tibio-talar contact stress. Two cadaver ankles were loaded in separate test sessions, during which ankle contact stresses were measured with a high-resolution (Tekscan) pressure sensor. Corresponding contact FE analyses were subsequently performed for comparison. The agreement was good between FE-computed and experimentally measured mean (3.2% discrepancy for one ankle, 19.3% for the other) and maximum (1.5% and 6.2%) contact stress, as well as for contact area (1.7% and 14.9%). There was also excellent agreement between histograms of fractional areas of cartilage experiencing specific ranges of contact stress. Finally, point-by-point comparisons between the computed and measured contact stress distributions over the articular surface showed substantial agreement, with correlation coefficients of 90% for one ankle and 86% for the other. In the past, general qualitative, but little direct quantitative agreement has been demonstrated with articular joint contact FE models. The methods used for this validation enable formal comparison of computational and experimental results, and open the way for objective statistical measures of regional correlation between FE-computed contact stress distributions from comparison articular joint surfaces (e.g., those from an intact versus those with residual intra-articular fracture incongruity).
COVID-19 has created significant concern surrounding the impact of pandemic lockdown on mental health. While the pandemic lockdown can be distressing, times of crisis can also provide people with the opportunity to think divergently and explore different activities. Novelty seeking, where individuals explore novel and unfamiliarly stimuli and environments, may enhance the creativity of individuals to solve problems in a way that allows them to adjust their emotional responses to stressful situations. This study employs a longitudinal design to investigate changes in novelty seeking and mental health outcomes (namely, stress, anxiety, and depression) before, during, and after COVID-19 pandemic lockdown, among a group of students (final N = 173; Mage = 19.81; SDage = 0.98; 135 females and 38 males) from a university in southeast China. Participants were surveyed at three points: November, 2019 (prior to the COVID-19 pandemic); between February and March, 2020 (during the peak of the pandemic and intense lockdown in China); and between May and June, 2020 (after lockdown had been lifted in China). Cross-sectionally, correlation analysis indicated that greater novelty seeking was associated with lower levels of stress, anxiety, and depression at all three time points. Univariate latent curve modeling (LCM) indicated a growth trajectory in which novelty seeking increased over time and then remained high during the post-lockdown period. Stress, anxiety, and depression all showed V-shaped growth trajectories in which these variables decreased during lockdown, before increasing in the post-lockdown period. Multivariate LCM indicated the growth trajectory for novelty seeking was associated with the growth trajectories for stress, anxiety, and depression. This suggests that the observed decreases in stress, anxiety, and depression during the lockdown period may be attributable to the sample’s observed increase in novelty seeking. These findings are valuable in that they challenge the notion that lockdown measures are inherently detrimental to mental health. The findings indicate the important role of novelty seeking in responding to crises. It may be possible for future public health measures to incorporate the promotion of novelty seeking to help individuals’ respond to stressful situations and maintain good mental health in the face of crises.
The role of altered contact mechanics in the pathogenesis of posttraumatic osteoarthritis (PTOA) following intraarticular fracture remains poorly understood. One proposed etiology is that residual incongruities lead to altered joint contact stresses that, over time, predispose to PTOA. Prevailing joint contact stresses following surgical fracture reduction were quantified in this study using patientspecific contact finite element (FE) analysis. FE models were created for 11 ankle pairs from tibial plafond fracture patients. Both (reduced) fractured ankles and their intact contralaterals were modeled. A sequence of 13 loading instances was used to simulate the stance phase of gait. Contact stresses were summed across loadings in the simulation, weighted by resident time in the gait cycle. This chronic exposure measure, a metric of degeneration propensity, was then compared between intact and fractured ankle pairs. Intact ankles had lower peak contact stress exposures that were more uniform and centrally located. The series-average peak contact stress elevation for fractured ankles was 38% (p ¼ 0.0015; peak elevation was 82%). Fractured ankles had less area with low contact stress exposure than intact ankles and a greater area with high exposure. Chronic contact stress overexposures (stresses exceeding a damage threshold) ranged from near zero to a high of 18 times the matched intact value. The patient-specific FE models represent substantial progress toward elucidating the relationship between altered contact stresses and the outcome of patients treated for intraarticular fractures. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.