Myelin basic protein (MBP) from the Whaler shark (Carcharhinus obscurus) has been purified from acid extracts of a chloroform/methanol pellet from whole brains. The amino acid sequence of the majority of the protein has been determined and compared with the sequences of other MBPs. The shark protein has only 44% homology with the bovine protein, but, in common with other MBPs, it has basic residues distributed throughout the sequence and no extensive segments that are predicted to have an ordered secondary structure in solution. Shark MBP lacks the triproline sequence previously postulated to form a hairpin bend in the molecule. The region containing the putative consensus sequence for encephalitogenicity in the guinea pig contains several substitutions, thus accounting for the lack of activity of the shark protein. Studies of the secondary structure and self-association have shown that shark MBP possesses solution properties similar to those of the bovine protein, despite the extensive differences in primary structure.
The binding of myelin basic protein to lysolauroylphosphatidylcholine (lysoLPC) and lysolauroylphosphatidylethanolamine was investigated at neutral pH using gel partition chromatography and equilibrium dialysis at 20 and 37 degrees C. The results show that the protein-lysolipid interactions are highly cooperative and that the free lysolipid concentration at which the binding commences is markedly influenced by both the chemical structure of the lysolipids and the temperature. The binding begins just below the critical micelle concentration for both lysolipids, which suggests that the forces governing micellization and the binding are similar. Circular dichroism (CD) spectroscopy was used to follow changes in the conformation of the protein caused by lysomyristoylphosphatidylcholine and lysoLPC. The CD results indicate that lysolipid association with the protein commences below the critical micelle concentration and continues above this concentration. Mechanisms for the lysolipid-protein interaction, which are consistent with the binding and CD data, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.