BackgroundReports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks.ObjectivesThe objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports.MethodsThree electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with ‘outbreak’ as the unit of analysis.ResultsFrom a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively).ConclusionsMore consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts.
The COVID-19 pandemic has given rise to rapid and widespread international pursuit of wastewater surveillance for genetic signals of SARS-CoV-2, the virus causing the pandemic. Environmental scientists and engineers familiar with the techniques required for this endeavor have responded. Many of the environmental scientists engaged in these investigations have not necessarily had experience with the ethical obligations associated with generating and handling human health data. The Canadian Water Network facilitated adoption of these surveillance methods by creating a national coalition, which included a public health advisory group that recognized a need for ethics guidance for the wastewater approach to public health surveillance. This Policy Analysis addresses that need and is based on a review of relevant ethics literature tightly focused on ethics applicable to public health surveillance. That review revealed that classical health bioethics governing clinical practice and general public health ethics guidance did not adequately address key issues in wastewater surveillance. The 2017 World Health Organization guidelines, directly based on a systematic literature review, specifically addressed ethical issues in public health surveillance. The application of relevant ethical guidance to wastewater surveillance is analyzed and summarized for environmental scientists.
The water operator plays an important role in water safety; however, little published research exists that has examined this role. The purpose of this study was to develop a greater understanding of the experience, existing knowledge, confidence and future training needs of the small, non-community drinking water operator in Ontario in order to help guide future outreach and training opportunities. A cross-sectional telephone survey of 332 small, non-community drinking water operators in Ontario was conducted in July and August 2011. Survey questions pertained to respondents' experience as operators, formal training, perceived importance of water safety issues, confidence in handling water safety issues, and future training needs. Approximately 16% (54/330) of respondents had one year or less experience as a water operator, and 60% (199/332) reported that being a water operator was not a chosen profession. Only 37% (124/332) of operators reported completing operator training. Respondents reported a preference for online training courses or on-site training (compared with a classroom setting). Low training rates, inexperience, and in certain situations, low confidence, among many small water system operators highlight a need to provide continued support to the development of ongoing training opportunities in this population.
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
West Nile virus (WNV) is the most widely distributed arbovirus in the world and the spread is influenced by complex factors including weather conditions and urban environmental settings like storm water management ponds (SWMP). The purpose of this work was to develop an ordinary differential equation model to explore the impacts of SWMP, temperature and precipitation on WNV vector abundance and the transmission of WNV between mosquito and bird populations. The model was used to analyse how weather conditions and SWMP can influence the basic reproduction number. The results found that an excess of precipitation and fiercer intraspecific competition will reduce vector population and the peak value of infectious vectors and birds. This information can be used to identify measures that would be useful to control larval abundance in SWMP and the transmission of WNV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.